以生物炭为内核的BC@BiOBr催化剂的制备及可见光光催化性能

周奥, 曹新强, 顾彦, 焦磊, 黄应平, 方艳芬. 以生物炭为内核的BC@BiOBr催化剂的制备及可见光光催化性能[J]. 环境化学, 2019, 38(2): 235-242. doi: 10.7524/j.issn.0254-6108.2018030303
引用本文: 周奥, 曹新强, 顾彦, 焦磊, 黄应平, 方艳芬. 以生物炭为内核的BC@BiOBr催化剂的制备及可见光光催化性能[J]. 环境化学, 2019, 38(2): 235-242. doi: 10.7524/j.issn.0254-6108.2018030303
ZHOU Ao, CAO Xinqiang, GU Yan, JIAO Lei, HUANG Yingping, FANG Yanfen. Preparation of BC@BiOBr catalyst with biochar as core and its visible light photocatalytic performance[J]. Environmental Chemistry, 2019, 38(2): 235-242. doi: 10.7524/j.issn.0254-6108.2018030303
Citation: ZHOU Ao, CAO Xinqiang, GU Yan, JIAO Lei, HUANG Yingping, FANG Yanfen. Preparation of BC@BiOBr catalyst with biochar as core and its visible light photocatalytic performance[J]. Environmental Chemistry, 2019, 38(2): 235-242. doi: 10.7524/j.issn.0254-6108.2018030303

以生物炭为内核的BC@BiOBr催化剂的制备及可见光光催化性能

  • 基金项目:

    国家自然科学基金(21577078,21677086,21377067),科技惠民计划项目(S2013GMD100042),湖北省创新群体滚动项目(2015CFA021)和国家水专项(2012ZX07104-003-04)资助

Preparation of BC@BiOBr catalyst with biochar as core and its visible light photocatalytic performance

  • Fund Project: Supported by National Natural Science Foundation of China(21577078, 21677086, 21377067), Science and Technology Huimin Project(S2013GMD100042), Hubei Innovation Group Scroll Project(2015CFA021) and National Water Special Project(2012ZX07104-003-04)
  • 摘要: 以热裂解处理香蒲的茎部获得比表面积为341.27 m2·g-1的生物炭作为载体,在水热条件下制备了生物炭负载的溴氧化铋(BC@BiOBr)光催化剂,并采用扫描电镜(SEM)、透射电镜(TEM)、X-射线衍射(XRD)、Zeta电位分析仪、紫外-可见漫反射(UV-Vis DRS)和荧光光谱(PL)等技术对该负载型催化剂的物理结构和性质进行了表征,结果发现BC@BiOBr和BiOBr两种催化剂表面均为BiOBr片,其中BC@BiOBr催化剂是由约1 μm片状 BiOBr组装而成,XRD测得上述两种催化剂均为BiOBr晶相,而对无定形的BC并未检测到.通过测定反应物前驱体和生物炭的表面电荷,推测带正电荷的氢氧化铋絮凝沉淀因静电引力BC@BiOBr簇状催化剂.通过紫外可见漫反射光谱、固体荧光光谱和循环伏安曲线等测试,发现构成的簇状结构既能提高BC@BiOBr对可见光的响应程度又能使其光生空穴和电子的复合几率变小.以罗丹明B(RhB)作为底物探针,测试催化剂在可见光照射90 min时的降解速率,发现与单纯BiOBr(71.4%)相比,BC@BiOBr具有更高的可见光催化活性(93.1%),通过对氧自由基等测定实验发现这可能与BC@BiOBr体系产生了更多的氧自由基有关.
  • 加载中
  • [1] FANG Y F, MA W H, HUANG Y P, et al, Exploring the reactivity of multicomponent photocatalysts: Insight into the complex valence band of BiOBr[J]. Chemistry European Journal. 2013, 19 (9), 3224-3229.
    [2] WANG J, DONG C, JIANG B B, et al. Preparation of visible light-driven Ag2 CO3 /BiOBr composite photocatalysts with universal degradation abilities[J]. Materials Letters, 2014, 131(12):108-111.
    [3] DUO F, FAN C, WANG Y, et al. One-pot hydrothermal synthesis of a novel BiPO4 /BiOBr composite with enhanced visible light photocatalytic activities[J]. Materials Science in Semiconductor Processing, 2015, 38:157-164.
    [4] LEE W P, WONG F H, ATTENBOROUGH N K, et al. Two-dimensional bismuth oxybromide coupled with molybdenum disulphide for enhanced dye degradation using low power energy-saving light bulb[J]. Journal of Environmental Management, 2017, 197:63-69.
    [5] JIA X, CAO J, LIN H, et al. One-pot synthesis of novel flower-like BiOBr0.9I0.1/BiOI heterojunction with largely enhanced electron-hole separation efficiency and photocatalytic performances[J]. Journal of Molecular Catalysis A Chemical, 2015, 409(29):94-101.
    [6] LIN H P, LEE W W, HUANG S T, et al. Controlled hydrothermal synthesis of PbBiO2 Br/BiOBr heterojunction with enhanced visible-driven-light photocatalytic activities[J]. Journal of Molecular Catalysis A Chemical, 2016, 417:168-183.
    [7] JIAO H P, YU X, LIU Z Q, et al. One-pot synthesis of heterostructured Bi2S3/BiOBr microspheres with highly efficient visible light photocatalytic performance[J]. Rsc Advances, 2015, 5(21):16239-16249.
    [8] CUI Y, JIA Q, LI H, et al. Photocatalytic activities of Bi2S3/BiOBr nanocomposites synthesized by a facile hydrothermal process[J]. Applied Surface Science, 2014, 290(1):233-239.
    [9] CHANG H, HUANG B, WANG P, et al. In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants[J]. Chemical Communications, 2011, 47(25):7054-7056.
    [10] FAN Q, YU C, CAO F, et al. Effects of Pd nanoparticles on light absorption and photocatalytic performance of BiOBr[J]. Nanotechnology & Precision Engineering, 2013, 11(6):524-528.
    [11] WANG R, JIANG G, WANG X, et al. Efficient visible-light-induced photocatalytic activity over the novel Ti-doped BiOBr microspheres[J]. Powder Technology, 2012, 228(3):258-263.
    [12] JIANG G, WANG X, WEI Z, et al. Photocatalytic properties of hierarchical structures based on Fe-doped BiOBr hollow microspheres[J]. Journal of Materials Chemistry A, 2013, 1(7):2406-2410.
    [13] HE M, LI W, XIA J, et al. The enhanced visible light photocatalytic activity of yttrium-doped BiOBr synthesized via a reactable ionic liquid[J]. Applied Surface Science, 2015, 331:170-178.
    [14] HANA, SUN J, CHUAH G K, et al. Enhanced p-cresol photodegradation over BiOBr/Bi2O3 in the presence of rhodamine B[J]. Rsc Advances, 2016, 7(1):145-152.
    [15] LI M, HUANG H, YU S, et al. Simultaneously promoting charge separation and photoabsorption of BiOX (X=Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar[J]. Applied Surface Science, 2016, 386:285-295.
    [16] 自俊青, 邓希贤, 金虬, 等. 氮蓝四唑光照法实验操作的改进及效果[J]. 北京师范大学学报:自然科学版, 1998,34(1):101-104.

    ZI J Q, DENG X X, JIN Q, et al. Improvement and effect of experimental operation of nitrogen blue tetrazole illumination[J]. Journal of Beijing Normal University: Natural Science Edition, 1998,34(1):101-104(in Chinese).

    [17] 吴春红, 方艳芬, 赵萍, 等. Ag-BiVO4复合光催化剂的制备及其可见光光催化机理的研究[J]. 分子催化, 2015, 29(4):369-381.

    WU C H, FANG Y F, ZHAO P, et al. Preparation of Ag-BiVO4 composite and its photocatalytic oxidation mechanism[J]. Molecular Catalysis, 2015, 29(4): 369-381(in Chinese).

    [18] SU Y, DING C, DANG Y, et al. First hydrothermal synthesis of Bi5O7 Br and its photocatalytic properties for molecular oxygen activation and RhB degradation[J]. Applied Surface Science, 2015, 346(6):311-316.
    [19] 周薇, 胡晓龙, 赵小蓉, 等. 石墨烯-溴氧化铋复合物的制备及可见光光催化性能研究[J]. 分子催化, 2014,28(4):367-375.

    ZHOU W, ZHAO X L, ZHAO X R, et al. Preparation of graphene-BiOBr composite and the enhanced photocatalytic activity under visible-light irradiation[J]. Molecular Catalysis, 2014,28(4): 367-375(in Chinese).

    [20] 姬磊, 王浩人, 于瑞敏. p-n异质结型光催化剂BiOBr/NaBiO3的制备与可见光催化活性[J]. 高等学校化学学报, 2014, 35(10):2170-2176.

    JI L, WANG H R, YU R M, et al. Preparation, characterization and visible-light photocatalytic activities of p-n heterojunction BiOBr/NaBiO3 composites[J]. Chemical Journal of Chinese Universities, 2014, 35(10): 2170-2176(in Chinese).

    [21] 赵毅, 许勇毅, 赵莉, 等. 纳米级TiO2光催化氧化机理及其在污染治理中的应用[J]. 电力科技与环保, 2005, 21(4):43-47.

    ZHAO Y, XU Y Y, ZHAO L, et al. Study on the photocatalysis mechanism on nanosized TiO2 photocatalyst and its application for pollutant treatment[J]. Power Science and Technology and Environmental Protection, 2005, 21(4):43-47(in Chinese).

  • 加载中
计量
  • 文章访问数:  1696
  • HTML全文浏览数:  1654
  • PDF下载数:  113
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-03-03
  • 刊出日期:  2019-02-15
周奥, 曹新强, 顾彦, 焦磊, 黄应平, 方艳芬. 以生物炭为内核的BC@BiOBr催化剂的制备及可见光光催化性能[J]. 环境化学, 2019, 38(2): 235-242. doi: 10.7524/j.issn.0254-6108.2018030303
引用本文: 周奥, 曹新强, 顾彦, 焦磊, 黄应平, 方艳芬. 以生物炭为内核的BC@BiOBr催化剂的制备及可见光光催化性能[J]. 环境化学, 2019, 38(2): 235-242. doi: 10.7524/j.issn.0254-6108.2018030303
ZHOU Ao, CAO Xinqiang, GU Yan, JIAO Lei, HUANG Yingping, FANG Yanfen. Preparation of BC@BiOBr catalyst with biochar as core and its visible light photocatalytic performance[J]. Environmental Chemistry, 2019, 38(2): 235-242. doi: 10.7524/j.issn.0254-6108.2018030303
Citation: ZHOU Ao, CAO Xinqiang, GU Yan, JIAO Lei, HUANG Yingping, FANG Yanfen. Preparation of BC@BiOBr catalyst with biochar as core and its visible light photocatalytic performance[J]. Environmental Chemistry, 2019, 38(2): 235-242. doi: 10.7524/j.issn.0254-6108.2018030303

以生物炭为内核的BC@BiOBr催化剂的制备及可见光光催化性能

  • 1.  三峡大学 生物与制药学院, 宜昌, 443002;
  • 2.  三峡大学 水利与环境学院, 宜昌, 443002;
  • 3.  三峡库区生态环境教育部工程研究中心(三峡大学), 宜昌, 443002
基金项目:

国家自然科学基金(21577078,21677086,21377067),科技惠民计划项目(S2013GMD100042),湖北省创新群体滚动项目(2015CFA021)和国家水专项(2012ZX07104-003-04)资助

摘要: 以热裂解处理香蒲的茎部获得比表面积为341.27 m2·g-1的生物炭作为载体,在水热条件下制备了生物炭负载的溴氧化铋(BC@BiOBr)光催化剂,并采用扫描电镜(SEM)、透射电镜(TEM)、X-射线衍射(XRD)、Zeta电位分析仪、紫外-可见漫反射(UV-Vis DRS)和荧光光谱(PL)等技术对该负载型催化剂的物理结构和性质进行了表征,结果发现BC@BiOBr和BiOBr两种催化剂表面均为BiOBr片,其中BC@BiOBr催化剂是由约1 μm片状 BiOBr组装而成,XRD测得上述两种催化剂均为BiOBr晶相,而对无定形的BC并未检测到.通过测定反应物前驱体和生物炭的表面电荷,推测带正电荷的氢氧化铋絮凝沉淀因静电引力BC@BiOBr簇状催化剂.通过紫外可见漫反射光谱、固体荧光光谱和循环伏安曲线等测试,发现构成的簇状结构既能提高BC@BiOBr对可见光的响应程度又能使其光生空穴和电子的复合几率变小.以罗丹明B(RhB)作为底物探针,测试催化剂在可见光照射90 min时的降解速率,发现与单纯BiOBr(71.4%)相比,BC@BiOBr具有更高的可见光催化活性(93.1%),通过对氧自由基等测定实验发现这可能与BC@BiOBr体系产生了更多的氧自由基有关.

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回