椭圆小球藻对水体汞光还原的影响

莫雅斐, 金林, 孙荣国, 王丽萍. 椭圆小球藻对水体汞光还原的影响[J]. 环境化学, 2019, 38(2): 354-362. doi: 10.7524/j.issn.0254-6108.2018041705
引用本文: 莫雅斐, 金林, 孙荣国, 王丽萍. 椭圆小球藻对水体汞光还原的影响[J]. 环境化学, 2019, 38(2): 354-362. doi: 10.7524/j.issn.0254-6108.2018041705
MO Yafei, JIN Lin, SUN Rongguo, WANG Liping. Effects of Chlorella ellipticus on the photoreduction of Hg2+ in water body[J]. Environmental Chemistry, 2019, 38(2): 354-362. doi: 10.7524/j.issn.0254-6108.2018041705
Citation: MO Yafei, JIN Lin, SUN Rongguo, WANG Liping. Effects of Chlorella ellipticus on the photoreduction of Hg2+ in water body[J]. Environmental Chemistry, 2019, 38(2): 354-362. doi: 10.7524/j.issn.0254-6108.2018041705

椭圆小球藻对水体汞光还原的影响

  • 基金项目:

    国家自然科学基金(41563012、21767007),中国博士后科学基金(2017M613005),贵州省科技厅联合基金(黔科合LH字[2017]7334),贵州省教育厅青年科技人才成长项目(黔教合KY[2016]135),贵州师范大学博士科研启动基金(2014)和贵州师范大学"省级大学生创新创业训练计划"项目(201710663071)资助

Effects of Chlorella ellipticus on the photoreduction of Hg2+ in water body

  • Fund Project: Supported by the National Natural Science Foundation of China (41563012, 21767007), China Postdoctoral Science Foundation (2017M613005), Science and Technology Department of Guizhou Province ([2017]7334), Foundation of Guizhou Educational Committee (KY[2016]135), the Doctoral Scientific Research Foundation of Guizhou Normal University for 2014 and Innovation Project of Guizhou Educational Committee for Undergraduate (201710663071)
  • 摘要: 为明确椭圆小球藻对水体中Hg2+光还原反应的影响,采用室内模拟实验,以不同波长紫外灯及氙灯(可见光)为光源,探讨不同丰度活、死椭圆小球藻在各光照条件下对Hg2+光还原反应的影响及动力学特征.结果表明,当藻丰度为1×106 cells·mL-1时,在可见光照射下,活藻、死藻处理Hg0的释放量分别为3.733 ng、3.749 ng,Hg2+的还原率分别为18.66%、18.75%;在紫外光(UV)照射下,活藻、死藻处理Hg0的释放量最高为2.312 ng、2.373 ng,Hg2+的还原率最高为11.56%、11.86%.在可见光、UVA、UVB和黑暗条件下,当藻丰度为0 cells·mL-1时,Hg2+的还原率分别为21.45%、22.86%、26.75%、20.41%;随藻丰度的增加,Hg2+的还原率逐渐下降;当藻丰度为10×106 cells·mL-1时,活藻处理Hg2+的还原率分别降至17.70%、10.28%、9.962%、9.774%,死藻处理的降至18.15%、10.83%、10.77%、10.39%.可见,椭圆小球藻对Hg2+的光还原反应起抑制作用,藻丰度越高抑制作用越强烈;可见光对含藻处理Hg2+的光还原起主要作用,其次为紫外光.动力学研究表明,UV照射下椭圆小球藻对Hg2+光还原反应可用Langmuir-Hinshelwood模型进行描述,反应速率常数k为(0.6893—1.473)×10-4 ng·L-1·min-1,Langmuir吸附系数KL为(1.063—1.080)×10-2 L·ng-1.
  • 加载中
  • [1] O'DRISCOLL N J, STEPHEN B, SICILIANO S D, et al. Continuous analysis of dissolved gaseous mercury (DGM) and mercury flux in two freshwater lakes in Kejimkujik Park, Nova Scotia: Evaluating mercury flux models with quantitative data[J]. Environmental Science & Technology, 2003, 37(10): 2226-2235.
    [2] O'DRISCOLL N J, SICILIANO S D, LEAN D R. Continuous analysis of dissolved gaseous mercury in freshwater lakes[J]. Science of the Total Environment, 2003, 304(1-3): 285-294.
    [3] 阴永光, 李雁宾, 蔡勇,等. 汞的环境光化学[J]. 环境化学, 2011, 30(1): 84-91.

    YIN Y G, LI Y B, CAI Y, et al. Environmental photo-chemistry of mercury[J]. Environmental Chemistry, 2011, 30(1): 84-91 (in Chinese).

    [4] SMITH-DOWNEY N V, SUNDERL E M, JACOB D J. Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model[J]. Journal of Geophysical Research Atmospheres, 2010, 115: 1-11.
    [5] 冯新斌. 水库汞的生物地球化学循环研究进展[J]. 环保科技, 2011, 17(1): 1-5.

    FENG X B. A review on mercury biogeochemical cycling in reservoirs[J]. Environmental Protection and Technology, 2011, 17(1): 1-5 (in Chinese).

    [6] MASON R P, FITZGERALD W F, MOREL F M M. The biogeochemical cycling of elemental mercury: Anthropogenic influences[J]. Geochimica Et Cosmochimica Acta, 1994, 58(15): 3191-3198.
    [7] MASON R P, SHEU G-R. Role of the ocean in the global mercury cycle[J]. Global Biogeochemical Cycles, 2002, 16(4): 1093-2010.
    [8] SELIN N E, JACOB D J, YANTOSCA R M, et al. Global 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition[J]. Global Biogeochemical Cycles, 2008, 22(3): 1-13.
    [9] FU X W, ZHANG H, WANG X, et al. Observations of atmospheric mercury in China: A critical review[J]. Atmospheric Chemistry & Physics Discussions, 2015, 15(16): 11925-11983.
    [10] ORIHEL D M, PATERSON M J, BLANCHFIELD P J, et al. Experimental evidence of a linear relationship between inorganic mercury loading and methylmercury accumulation by aquatic biota[J]. Environmental Science & Technology, 2007, 41(14): 4952-4958.
    [11] AMYOT M, MCQUEEN D J, MIERLE G, et al. Sunlight-induced formation of dissolved gaseous mercury in lake waters[J]. Environmental Science & Technology, 1994, 28(13): 2366-2371.
    [12] LALONDE J D, AMYOT M, KRAEPIEL A M, et al. Photooxidation of Hg(0) in artificial and natural waters[J]. Environmental Science & Technology, 2001, 35(7): 1367-1372.
    [13] ZHANG H, LINDBERG S E. Sunlight and iron(Ⅲ)-induced photochemical production of dissolved gaseous mercury in freshwater[J]. Environmental Science & Technology, 2001, 35(5): 928-935.
    [14] MALONEY K O, MORRIS D P, MOSES C O, et al. The role of iron and dissolved organic carbon in the absorption of ultraviolet radiation in Humic Lake water[J]. Biogeochemistry, 2005, 75(3): 393-407.
    [15] O'DRISCOLL N J, SICILIANO S D, LEAN D R S, et al. Gross photoreduction kinetics of mercury in temperate freshwater lakes and rivers: Application to a general model of DGM dynamics[J]. Environmental Science & Technology, 2006, 40(3): 837-843.
    [16] O'DRISCOLL N J, SICILIANO S D, PEAK D, et al. The influence of forestry activity on the structure of dissolved organic matter in lakes: implications for mercury photoreactions[J]. Science of the Total Environment, 2006, 366(2-3): 880-893.
    [17] SI L, ARIYA P A. Reduction of oxidized mercury species by dicarboxylic acids (C2-C4): Kinetic and product studies[J]. Environmental Science & Technology, 2008, 42(14): 5150-5155.
    [18] ZHANG Y T, SUN R G, MA M, et al. Study of inhibition mechanism of NO3- on photoreduction of Hg(Ⅱ) in artificial water[J]. Chemosphere, 2012, 87(2): 171-176.
    [19] SUN R G, WANG D Y, ZHANG Y T, et al. Photo-degradation of monomethylmercury in the presence of chloride ion[J]. Chemosphere, 2013, 91(11): 1471-1476.
    [20] QURESHI A, O'DRISCOLL N J, MACLEOD M, et al. Photoreactions of mercury in surface ocean water: gross reaction kinetics and possible pathways[J]. Environmental Science & Technology, 2010, 44(2):644-649.
    [21] 李希嘉, 钟紫旋, 孙荣国,等. 不同波长和强度光照对水体汞还原的影响[J]. 环境科学, 2014, 35(5):1788-1792.

    LI X J, ZHONG Z X, SUN R G, et al. Influence of light wavelength and intensity on the reduction of divalent mercury in aquatic system[J]. Environmental Science, 2014, 35(5): 1788-1792 (in Chinese).

    [22] BEN-BASSAT D, MAYER A M. Light-induced Hg volatilization and O2 evolution in Chlorella and the effect of DCMU and methylamine[J]. Physiologia Plantarum, 1978, 42(1): 33-38.
    [23] DENG L, WU F, DENG N, et al. Photoreduction of mercury(Ⅱ) in the presence of algae, anabaena cylindrical[J]. Journal of Photochemistry & Photobiology B Biology, 2008, 91(2-3): 117-124.
    [24] MORELLI E, FERRARA R, BELLINI B, et al. Changes in the non-protein thiol pool and production of dissolved gaseous mercury in the marine diatom Thalassiosira weissflogii under mercury exposure[J]. Science of the Total Environment, 2009, 408(2): 286-293.
    [25] GUO L. Ecology-doing battle with the green monster of Taihu Lake[J]. Science, 2007, 317(5842): 1166-1166.
    [26] 陈灿, 潘亚男, 王欣,等. 凤眼莲生物炭对稻田土壤肥力的影响[J]. 环境化学, 2017, 36(4): 907-914.

    CHEN C, PAN Y N, WANG X, et al. Influence of water hyacinth biochar on retention of nutrition in paddy soils[J]. Environmental Chemistry, 2017, 36(4): 907-914 (in Chinese).

    [27] USEPA(U. S. Environmental Protection Agency). Method 1631, Revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry, EPA-821-R-02-019[M]. Washington, DC: U. S. EPA, 2002: 2-38.
    [28] 鲁新宇, 刘建兰, 冯鸣. 物理化学[M]. 北京: 化学工业出版社, 2008: 214-262. LU X Y, LIU J L, FENG M. Physical chemistry[M]. Beijing: Chemical Industry Press, 2008: 214

    -262 (in Chinese).

    [29] 孙荣国, 毛雯, 马明,等. 水体中甲基汞光化学降解特征研究[J]. 环境科学, 2012, 33(12): 4329-4334.

    SUN R G, MAO W, MA M, et al. Characteristics of monomethylmercury photodegradation in water body[J].Environmental Science, 2012, 33(12): 4329-4334 (in Chinese).

    [30] 孙荣国. 三峡水库水体甲基汞光化学降解特征及其作用机制与影响因素[D]. 重庆: 西南大学, 2014. SUN R G. Mechanisms and influencing factors of methylmercury photodegradation in the water body of Three Gorges Reservoir, China[D]. Chongqing: Southwest University, 2014 (in Chinese).
    [31] SUN L, LU B, YUAN D, et al. Effect on the photo-production of dissolved gaseous mercury in post-desulfurized seawater discharged from a coal-fired power plant[J]. Water Air & Soil Pollution, 2015, 226(4): 118-128.
    [32] GARCIA E, AMYOT M, ARIYA P A. Relationship between DOC photochemistry and mercury redox transformations in temperate lakes and wetlands[J]. Geochimica Et Cosmochimica Acta, 2005, 69(8): 1917-1924.
    [33] VETTE A F. Photochemical influences on the air-water exchange of mercury[D]. Ann Arbor: University of Michigan, 1998.
    [34] ZHANG H. Photochemical Redox Reactions of Mercury[M]. Berlin, Heidelberg: Springer, 2006: 37-79.
    [35] LALONDE J D, AMYOT M, DOYON M R, et al. Photo-induced Hg(Ⅱ) reduction in snow from the remote and temperate Experimental Lakes Area (Ontario, Canada)[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D6): 4200-4207.
    [36] CHOI H D, HOLSEN T M. Gaseous mercury emissions from unsterilized and sterilized soils: The effect of temperature and UV radiation[J]. Environmental Pollution, 2009, 157(5): 1673-1678.
    [37] DAUGHNEY C J, SICILIANO S D, RENCZ A N, et al. Hg(Ⅱ) adsorption by bacteria: A surface complexation model and its application to shallow acidic lakes and wetlands in Kejimkujik National Park, Nova Scotia, Canada[J]. Environmental Science & Technology, 2002, 36(7): 1546-1553.
    [38] 胡琴, 曹艳, 张喆倩,等. 不同微藻吸附重金属离子Cd2+的实验研究[J]. 上海环境科学, 2017, 36(4): 179-184.

    HU Q, CAO Y, ZHANG Z Q, et al. An experimental study on the adsorption of heavy metal ion Cd (Ⅱ) by different microalgae[J]. Shanghai Environmental Sciences, 2017(4): 179-184 (in Chinese).

    [39] HAMMUD H H, MANSOUR E M E, SHAALAN S, et al. Adsorption of mercuric ion by marine algae Enteromorpha[C]. India:Research India Publications, 2006: 87-102.
    [40] DIÉGUEZ M C, QUEIMALIOS C P, GUEVARA S R, et al. Influence of dissolved organic matter character on mercury incorporation by planktonic organisms: an experimental study using oligotrophic water from Patagonian lakes[J]. Journal of Environmental Sciences, 2013, 25(10): 1980-1991.
    [41] 支田田, 程丽华, 徐新华,等. 藻类去除水体中重金属的机理及应用[J]. 化学进展, 2011, 23(8): 1782-1794.

    ZHI T T, CHENG L H, XU X H, et al. Advances on heavy metals removal from aqueous solution by algae[J]. Progress in Chemistry, 2011(8): 1782-1794 (in Chinese).

    [42] 秦捷, 赵文, 张鹏. 环境汞污染对藻类的毒性效应及其影响因素[J]. 生物学杂志, 2011, 28(3): 74-76.

    QIN J, ZHAO W, ZHANG P. The environment mercury pollution toxicity effect to the alga and their influencing factors[J].Journal of Biology, 2011, 28(3): 74-76 (in Chinese).

    [43] 刘军晖, 麻冰涓, 毛宇翔,等. 微藻对无机汞和甲基汞的吸附和吸收特性[J]. 环境化学, 2017, 36(7): 1602-1613.

    LIU J H, MA B J, MAO Y X, et al.Adsorption and absorption characteristics of inorganic mercury and methylmercury by microalgae[J]. Environmental Chemistry, 2017, 36(7): 1602-1613 (in Chinese).

    [44] 吴海锁, 张洪玲, 张爱茜,等. 小球藻吸附重金属离子的试验研究[J]. 环境化学, 2004, 23(2): 173-177.

    WU H S, ZHANG H L, ZHANG A Q, et al. Biosorption of heavy metals by Chlorella[J]. Environmental Chemistry, 2004, 23(2): 173-177 (in Chinese).

    [45] 邓南圣, 吴峰. 环境光化学[M]. 北京: 化学工业出版社, 2003: 210-217. DENG N S, WU F. Environmental photochemistry[M]. Beijing: Chemical Industry Press, 2003: 210

    -217 (in Chinese).

  • 加载中
计量
  • 文章访问数:  1629
  • HTML全文浏览数:  1606
  • PDF下载数:  93
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-04-17
  • 刊出日期:  2019-02-15
莫雅斐, 金林, 孙荣国, 王丽萍. 椭圆小球藻对水体汞光还原的影响[J]. 环境化学, 2019, 38(2): 354-362. doi: 10.7524/j.issn.0254-6108.2018041705
引用本文: 莫雅斐, 金林, 孙荣国, 王丽萍. 椭圆小球藻对水体汞光还原的影响[J]. 环境化学, 2019, 38(2): 354-362. doi: 10.7524/j.issn.0254-6108.2018041705
MO Yafei, JIN Lin, SUN Rongguo, WANG Liping. Effects of Chlorella ellipticus on the photoreduction of Hg2+ in water body[J]. Environmental Chemistry, 2019, 38(2): 354-362. doi: 10.7524/j.issn.0254-6108.2018041705
Citation: MO Yafei, JIN Lin, SUN Rongguo, WANG Liping. Effects of Chlorella ellipticus on the photoreduction of Hg2+ in water body[J]. Environmental Chemistry, 2019, 38(2): 354-362. doi: 10.7524/j.issn.0254-6108.2018041705

椭圆小球藻对水体汞光还原的影响

  • 1.  贵州师范大学化学与材料科学学院, 贵阳, 550001;
  • 2.  中国科学院地球化学研究所环境地球化学国家重点实验室, 贵阳, 550002
基金项目:

国家自然科学基金(41563012、21767007),中国博士后科学基金(2017M613005),贵州省科技厅联合基金(黔科合LH字[2017]7334),贵州省教育厅青年科技人才成长项目(黔教合KY[2016]135),贵州师范大学博士科研启动基金(2014)和贵州师范大学"省级大学生创新创业训练计划"项目(201710663071)资助

摘要: 为明确椭圆小球藻对水体中Hg2+光还原反应的影响,采用室内模拟实验,以不同波长紫外灯及氙灯(可见光)为光源,探讨不同丰度活、死椭圆小球藻在各光照条件下对Hg2+光还原反应的影响及动力学特征.结果表明,当藻丰度为1×106 cells·mL-1时,在可见光照射下,活藻、死藻处理Hg0的释放量分别为3.733 ng、3.749 ng,Hg2+的还原率分别为18.66%、18.75%;在紫外光(UV)照射下,活藻、死藻处理Hg0的释放量最高为2.312 ng、2.373 ng,Hg2+的还原率最高为11.56%、11.86%.在可见光、UVA、UVB和黑暗条件下,当藻丰度为0 cells·mL-1时,Hg2+的还原率分别为21.45%、22.86%、26.75%、20.41%;随藻丰度的增加,Hg2+的还原率逐渐下降;当藻丰度为10×106 cells·mL-1时,活藻处理Hg2+的还原率分别降至17.70%、10.28%、9.962%、9.774%,死藻处理的降至18.15%、10.83%、10.77%、10.39%.可见,椭圆小球藻对Hg2+的光还原反应起抑制作用,藻丰度越高抑制作用越强烈;可见光对含藻处理Hg2+的光还原起主要作用,其次为紫外光.动力学研究表明,UV照射下椭圆小球藻对Hg2+光还原反应可用Langmuir-Hinshelwood模型进行描述,反应速率常数k为(0.6893—1.473)×10-4 ng·L-1·min-1,Langmuir吸附系数KL为(1.063—1.080)×10-2 L·ng-1.

English Abstract

参考文献 (45)

返回顶部

目录

/

返回文章
返回