长沙市夏季大气臭氧生成对前体物的敏感性分析

伏志强, 戴春皓, 王章玮, 郭佳, 秦普丰, 张晓山. 长沙市夏季大气臭氧生成对前体物的敏感性分析[J]. 环境化学, 2019, 38(3): 531-538. doi: 10.7524/j.issn.0254-6108.2018042503
引用本文: 伏志强, 戴春皓, 王章玮, 郭佳, 秦普丰, 张晓山. 长沙市夏季大气臭氧生成对前体物的敏感性分析[J]. 环境化学, 2019, 38(3): 531-538. doi: 10.7524/j.issn.0254-6108.2018042503
FU Zhiqiang, DAI Chunhao, WANG Zhangwei, GUO Jia, QIN Pufeng, ZHANG Xiaoshan. Sensitivity analysis of atmospheric ozone formation to its precursors in summer of Changsha[J]. Environmental Chemistry, 2019, 38(3): 531-538. doi: 10.7524/j.issn.0254-6108.2018042503
Citation: FU Zhiqiang, DAI Chunhao, WANG Zhangwei, GUO Jia, QIN Pufeng, ZHANG Xiaoshan. Sensitivity analysis of atmospheric ozone formation to its precursors in summer of Changsha[J]. Environmental Chemistry, 2019, 38(3): 531-538. doi: 10.7524/j.issn.0254-6108.2018042503

长沙市夏季大气臭氧生成对前体物的敏感性分析

  • 基金项目:

    中国科学院战略性先导科技专项(XDB14020205)和国家重点研发计划项目(2016YFC0203200)资助.

Sensitivity analysis of atmospheric ozone formation to its precursors in summer of Changsha

  • Fund Project: Supported by "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDB14020205) and the National Key Research and Development Program of China (2016YFC0203200).
  • 摘要: 本文利用长沙市区环境空气质量监测站点在线观测资料,结合罐采样-三级冷阱预浓缩-气相色谱法分析非甲烷烃类化合物和衍生化-高效液相色谱法分析醛酮类化合物,基于观测的光化学模型分析了长沙市区2017年5月和9月部分时段臭氧生成对前体物的敏感性.结果表明,观测期间长沙市区臭氧浓度日变化均呈现典型的单峰特征,峰值浓度出现在15时左右,凌晨高浓度一氧化氮呈现对臭氧明显的滴定效应;5月非甲烷烃浓度和醛酮总浓度较9月高,非甲烷烃主要组成为烷烃和芳香烃类,其次为植物源烃类,而甲醛、乙醛和丙酮为醛酮类化合物主要组分.白天随着光化学过程的发展,非甲烷烃被逐渐消耗,其活性浓度随之降低.模型分析发现:5月份氮氧化物和植物源烃类对长沙市区臭氧生成贡献最大,削减氮氧化物对臭氧控制最为有效;而9月臭氧生成对烯烃和芳香烃最为敏感,削减人为源烯烃和芳香烃对臭氧控制最为有效.
  • 加载中
  • [1] 唐孝炎张远航, 邵敏. 大气环境化学第二版[M].北京:高等教育出版社, 2006. TANG XY, ZHANG YH, SHAO M. Atomospheric environmental chemistry. Second edition.[M]. Beijing:Higher Education Press,2006(in Chinese).
    [2] JOHN H. SEINFELD S N P. Atmospheric chemistry and physics:From air pollution to climate change[M]. New Jersey:A Wiley-Interscience Publication. 2006.
    [3] MONKS P S, ARCHIBALD A T, COLETTE A, et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer[J]. Atmos Chem Phys, 2015, 15(15):8889-8973.
    [4] WILKINSON S, MILLS G, ILLIDGE R, et al. How is ozone pollution reducing our food supply?[J]. J Exp Bot, 2012, 63(2):527-536.
    [5] ZAK D R, HOLMES W E, PREGITZER K S. Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems[J]. Ecology, 2007, 88(10):2630-2639.
    [6] USEPA Ozone Pollution[EB/OL].[2017-07-01]. https://www.epa.gov/ozone-pollution
    [7] CARDELINO C A, CHAMEIDES W L. An observation-based model for analyzing ozone precursor relationships in the Urban Atmosphere[J]. Journal of the Air & Waste Management Association, 1995, 45(3):161-180.
    [8] SILLMAN S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments[J]. Atmos Environ, 1999, 33(12):1821-1845.
    [9] WEI W, LV Z, CHENG S, et al. Characterizing ozone pollution in a petrochemical industrial area in Beijing, China:A case study using a chemical reaction model[J]. Environmental Monitoring and Assessment, 2015, 187(6):377-387
    [10] WANG T, NIE W, GAO J, et al. Air quality during the 2008 Beijing Olympics:Secondary pollutants and regional impact[J]. Atmos Chem Phys, 2010, 10(16):7603-7615.
    [11] SHAO M, LU S, LIU Y, et al. Volatile organic compounds measured in summer in Beijing and their role in ground-level ozone formation[J]. J Geophys Res-Atmos, 2009, 114, (D00G):6-19.
    [12] AN J, ZOU J, WANG J, et al. Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China[J]. Environ Sci Pollut R, 2015, 22(24):19607-19617.
    [13] XUE L K, WANG T, GAO J, et al. Ground-level ozone in four Chinese cities:Precursors, regional transport and heterogeneous processes[J]. Atmos Chem Phys, 2014, 14(23):13175-13188.
    [14] SHI C, WANG S, LIU R, et al. A study of aerosol optical properties during ozone pollution episodes in 2013 over Shanghai, China[J]. Atmospheric Research, 2015, 153235-249.
    [15] SHAO M, ZHANG Y, ZENG L, et al. Ground-level ozone in the Pearl River delta and the roles of VOC and NOx in its production[J]. Journal of Environmental Management, 2009, 90(1):512-518.
    [16] JIA C, MAO X, HUANG T, et al. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China[J]. Atmospheric Research, 2016, 169:225-236.
    [17] LYU X P, CHEN N, GUO H, et al. Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China[J]. Science of the Total Environment, 2016, 541(Supplement C):200-209.
    [18] WANG T, XUE L, BRIMBLECOMBE P, et al. Ozone pollution in China:A review of concentrations, meteorological influences, chemical precursors, and effects[J]. Science of the Total Environment, 2017, 575:1582-1596.
    [19] 谭菊,许雄飞,瞿白露,等. 长沙市大气中总挥发性有机物分布特征、变化规律及污染对策研究[J]. 环境科学与管理, 2016, 41(1):105-107.

    TAN J, XU X F, QU B L, et al. Analysis on atmospheric distribution feature,variability and pollution disposal strategy of TVOC in Changsha[J]. Environmental Science and Management. 2016, 41(1):105-107(in Chinese).

    [20] 贾海鹰,李矛,程兵芬,等. 长沙市城区臭氧浓度特征研究[J]. 环境科学与技术, 2017, 40(2):168-173.

    JIA H Y, LI M, CHENG B F, et al. Analysis of the characteristics of ozone concentration in urban area of Changsha[J]. Environmental Science & Technology, 2017, 40(2):168-173. (in Chinese).

    [21] ATKINSON R, AREY J. Atmospheric Degradation of Volatile Organic Compounds[J]. Chemical Reviews, 2003, 103(12):4605-4638.
    [22] RUSSELL A, DENNIS R. NARSTO critical review of photochemical models and modeling[J]. Atmos Environ, 2000, 34(12):2283-2324.
    [23] SAUNDERS S M, JENKIN M E, DERWENT R G, et al. Protocol for the development of the master chemical mechanism, MCM v3(Part A):Tropospheric degradation of non-aromatic volatile organic compounds[J]. Atmos Chem Phys, 2003, 3(1):161-180.
    [24] JENKIN M E, SAUNDERS S M, WAGNER V, et al. Protocol for the development of the master chemical mechanism, MCM v3(Part B):Tropospheric degradation of aromatic volatile organic compounds[J]. Atmos Chem Phys, 2003, 3(1):181-193.
    [25] KANAYA Y, POCHANART P, LIU Y, et al. Rates and regimes of photochemical ozone production over central east China in June 2006:A box model analysis using comprehensive measurements of ozone precursors[J]. Atmos Chem Phys, 2009, 9(20):7711-7723.
    [26] XUE L K, WANG T, GUO H, et al. Sources and photochemistry of volatile organic compounds in the remote atmosphere of western China:Results from the Mt. Waliguan Observatory[J]. Atmos Chem Phys, 2013, 13(17):8551-8567.
    [27] 刘全,王跃思,吴方堃,等. 长沙大气中VOCs研究[J]. 环境科学, 2011, 32(12):3543-3548.

    LIU Q, WANG Y, WU F K, et al. Observation and study on atmospheric VOCs in Changsha City[J]. Chinese Journal of Environmental Science, 2011, 32(12):3543-3548(in Chinese).

    [28] ZHANG J, WANG Y, WU F, et al. Nonmethane hydrocarbon measurements at a suburban site in Changsha City, China[J]. Science of the Total Environment, 2009, 408(2):312-317.
    [29] GUO H, LING Z H, CHENG H R, et al. Tropospheric volatile organic compounds in China[J]. Science of the Total Environment, 2017, 574(Supplement C):1021-1043.
    [30] CHAMEIDES W L, FEHSENFELD F, RODGERS M O, et al. Ozone precursor relationships in the ambient atmosphere[J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D5):6037-6055.
    [31] 陆克定,张远航,苏杭,等. 珠江三角洲夏季臭氧区域污染及其控制因素分析[J]. 中国科学:化学, 2010, 40(4):407-420.

    LU K D, ZHANG Y H, SU H, et al. Regional ozone pollution and key controlling factors of photochemical ozone production in Pearl River Delta during summer time[J].Scientia Sinica Chimica, 2010, 40(4):407-420(in Chinese).

  • 加载中
计量
  • 文章访问数:  1761
  • HTML全文浏览数:  1725
  • PDF下载数:  112
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-04-25
  • 刊出日期:  2019-03-15
伏志强, 戴春皓, 王章玮, 郭佳, 秦普丰, 张晓山. 长沙市夏季大气臭氧生成对前体物的敏感性分析[J]. 环境化学, 2019, 38(3): 531-538. doi: 10.7524/j.issn.0254-6108.2018042503
引用本文: 伏志强, 戴春皓, 王章玮, 郭佳, 秦普丰, 张晓山. 长沙市夏季大气臭氧生成对前体物的敏感性分析[J]. 环境化学, 2019, 38(3): 531-538. doi: 10.7524/j.issn.0254-6108.2018042503
FU Zhiqiang, DAI Chunhao, WANG Zhangwei, GUO Jia, QIN Pufeng, ZHANG Xiaoshan. Sensitivity analysis of atmospheric ozone formation to its precursors in summer of Changsha[J]. Environmental Chemistry, 2019, 38(3): 531-538. doi: 10.7524/j.issn.0254-6108.2018042503
Citation: FU Zhiqiang, DAI Chunhao, WANG Zhangwei, GUO Jia, QIN Pufeng, ZHANG Xiaoshan. Sensitivity analysis of atmospheric ozone formation to its precursors in summer of Changsha[J]. Environmental Chemistry, 2019, 38(3): 531-538. doi: 10.7524/j.issn.0254-6108.2018042503

长沙市夏季大气臭氧生成对前体物的敏感性分析

  • 1.  中国科学院生态环境研究中心, 北京, 100085;
  • 2.  中国科学院大学, 北京, 100049;
  • 3.  湖南农业大学, 长沙, 410128
基金项目:

中国科学院战略性先导科技专项(XDB14020205)和国家重点研发计划项目(2016YFC0203200)资助.

摘要: 本文利用长沙市区环境空气质量监测站点在线观测资料,结合罐采样-三级冷阱预浓缩-气相色谱法分析非甲烷烃类化合物和衍生化-高效液相色谱法分析醛酮类化合物,基于观测的光化学模型分析了长沙市区2017年5月和9月部分时段臭氧生成对前体物的敏感性.结果表明,观测期间长沙市区臭氧浓度日变化均呈现典型的单峰特征,峰值浓度出现在15时左右,凌晨高浓度一氧化氮呈现对臭氧明显的滴定效应;5月非甲烷烃浓度和醛酮总浓度较9月高,非甲烷烃主要组成为烷烃和芳香烃类,其次为植物源烃类,而甲醛、乙醛和丙酮为醛酮类化合物主要组分.白天随着光化学过程的发展,非甲烷烃被逐渐消耗,其活性浓度随之降低.模型分析发现:5月份氮氧化物和植物源烃类对长沙市区臭氧生成贡献最大,削减氮氧化物对臭氧控制最为有效;而9月臭氧生成对烯烃和芳香烃最为敏感,削减人为源烯烃和芳香烃对臭氧控制最为有效.

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回