剩余污泥强化混凝气浮预处理煤气化废水

李达, 张崇剑, 马文成, 韩洪军, 陈志强. 剩余污泥强化混凝气浮预处理煤气化废水[J]. 环境化学, 2018, 37(12): 2585-2595. doi: 10.7524/j.issn.0254-6108.2018050801
引用本文: 李达, 张崇剑, 马文成, 韩洪军, 陈志强. 剩余污泥强化混凝气浮预处理煤气化废水[J]. 环境化学, 2018, 37(12): 2585-2595. doi: 10.7524/j.issn.0254-6108.2018050801
LI Da, ZHANG Chongjian, MA Wencheng, HAN Hongjun, CHEN Zhiqiang. Pretreatment of coal gasification wastewater by excess sludge enhanced coagulation-flotation[J]. Environmental Chemistry, 2018, 37(12): 2585-2595. doi: 10.7524/j.issn.0254-6108.2018050801
Citation: LI Da, ZHANG Chongjian, MA Wencheng, HAN Hongjun, CHEN Zhiqiang. Pretreatment of coal gasification wastewater by excess sludge enhanced coagulation-flotation[J]. Environmental Chemistry, 2018, 37(12): 2585-2595. doi: 10.7524/j.issn.0254-6108.2018050801

剩余污泥强化混凝气浮预处理煤气化废水

  • 基金项目:

    国家重点研发计划(2016YFB0600502)和黑龙江省级别资助项目(GX17C003)资助.

Pretreatment of coal gasification wastewater by excess sludge enhanced coagulation-flotation

  • Fund Project: Supported by National Key Research and Development Program-China(2016YFB0600502)and Heilongjiang Province-Level Funded Project(GX17C003).
  • 摘要: 为解决低浑浊度煤气化含油废水混凝气浮药剂投加量大、效率低的问题,本文开展混凝剂污泥共投加提高气浮工艺除污染能力的研究.研究表明,剩余污泥的投加明显改善了混凝沉淀对油类污染物的去除,在剩余污泥投加量从0增加到1200 mg·L-1时,含油量去除率由28.1%提升至44.1%.聚合氯化铝(PAC)、聚丙烯酰胺(PAM)和剩余污泥的最适宜投加量分别为150、2、1200 mg·L-1.A/O工艺二沉池剩余污泥强化混凝气浮效果最佳,充分气浮反应后对含油量的去除率由46%提升至84%,且气浮池油水分离区微气泡的稳定性得到明显改善.
  • 加载中
  • [1] GAI H J, JIANG Y B, QIAN Y, et al. Conceptual design and retrofitting of the coal-gasification wastewater treatment process[J]. Chemical Engineering Journal, 2008, 138(1-3):84-94.
    [2] JIA S Y, HAN H J, ZHUANG H F, et al. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor[J]. Bioresource Technology, 2015,189:426-429.
    [3] ZHUANG H F, HAN H J, JIA S Y, et al. Advanced Treatment of biologically pretreated coal gasification wastewater using a novel anoxic moving bed biofilm reactor (ANMBBR)-biological aerated filter (BAF) system[J]. Bioresource Technology, 2014,157:223-230.
    [4] JI Q H, TABASSUM S, HENA S, et al. A review on the coal gasification wastewater treatment technologies:Past, present and future outlook[J]. Journal of Cleaner Production, 2016,126:38-55.
    [5] JIA S Y, ZHUANG H F, HAN H J, et al. Application of industrial ecology in water utilization of coal chemical industry:A case study in Erdos, China[J]. Journal of Cleaner Production, 2016,135:20-29.
    [6] 张一能,唐秀华,邹平,等.我国焦化废水的水质特点及其处理方法[J]. 净水技术,2005,24(2):42-47.

    ZHANG Y N, TANG X H, ZOU P, et al. Characteristics and treatment methods of coal coking wastewater[J]. Water Purification Technology, 2005, 24(2):42-47(in Chinese).

    [7] SATHTHASIVAM J, LOGANATHAN K, SARP S. An overview of oil-water separation using gas flotation systems[J]. Chemosphere, 2016, 144:671-680.
    [8] LIM M W, LAU E V, POH P E. Micro-macrobubbles interactions and its application in flotation technology for the recovery of high density oil from contaminated sands[J]. Journal of Petroleum Science and Engineering, 2018, 161:29-37.
    [9] ETCHEPARE R, OLIVEIRA H, AZEVEDO A, et al. Separation of emulsified crude oil in saline water by dissolved air flotation with micro and nanobubbles[J]. Separation and Purification Technology, 2017, 186:326-332.
    [10] ZHU H, HAN Y X, XU C Y, et al. Overview of the state of the art of processes and technical bottlenecks for coal gasification wastewater treatment[J]. Science of the Total Environment, 2018, 637-638:1108-1126.
    [11] ZHAO Q, LIU Y. State of the art of biological processes for coal gasification wastewater treatment[J]. Biotechnology Advances, 2016, 34(5):1064-1072.
    [12] 苏兆阳,李星,杨艳玲. 强化混凝技术在水处理中的研究进展[J]. 水处理技术, 2016,42(2):11-14.

    SU Z Y, LI X, YANG Y L. Research progress on the enhanced flocculation in water treatment[J]. Technology of Water Treatment, 2016, 42(2):11-14(in Chinese).

    [13] 盛雅琼,朱佳,张可方,等. 回流比对污泥回流强化混凝工艺的影响[J]. 供水技术,2014,8(6):46-49.

    SHENG Y Q, ZHU J, ZHANG K F, et al. Effect of return ratio on sludge return enhanced coagulation process[J]. Water Technology, 2014, 8(6):46-49(in Chinese).

    [14] ZHOU Z W, YANG Y L, LI X, et al. Optimized removal of natural organic matter by ultrasound-assisted coagulation of recycling drinking water treatment sludge[J]. Ultrasonics Sonochemistry, 2018, 48:171-180.
    [15] 李丹阳. 基于氮气气浮除油与改善煤化工废水生化处理效能研究[D]. 哈尔滨:哈尔滨工业大学,2013. LI D Y. Research on improvement of treatment effectiveness of coal chemical wastewater based on nitrogen degreasing[D]. Harbin:Harbin Institute of Technology, 2013(in Chinese).
    [16] 张霖霖,周勇强,谢浩东,等. 紫外分光光度法直接测定废水中微量油的研究[J]. 光谱学与光谱分析,2001,21(5):716-718.

    ZHANG L L, ZHOU Y Q, XIE H D, et al. Study of direct determining animal and plant oil in sewage by ultraviolet spectrophotometry method[J]. Spectroscopy and Spectral Analysis, 2001, 21(5):716-718(in Chinese).

    [17] 庞艳华,丁永生,公维民. 紫外分光光度法测定水中油含量[J]. 大连海事大学学报,2002,28(4):68-71.

    PANG Y H, DING Y S, GONG W M. Study of measurement of oil-in-water using UV spectrum[J]. Journal of Dalian Maritime University, 2002, 28(4):68-71(in Chinese).

    [18] LIN R C, CHENG J, ZHANG J B, et al. Boosting biomethane yield and production rate with graphene:The potential of direct interspecies electron transfer in anaerobic digestion[J]. Bioresource Technology, 2017, 239:345-352.
    [19] SUN F, SUN W L, SUN H M, et al. Biosorption behavior and mechanism of beryllium from aqueous solution by aerobic granule[J]. Chemical Engineering Journal, 2011, 172(2-3):783-791.
    [20] 代腾跃. 活性污泥对污水中有机物的吸附降解特性实验研究[D]. 济南:山东建筑大学,2017. DAI T Y. Experimental study on adsorption and degradation characteristics of activated sludge in organic wastewater[D]. Jinan:Shandong Jianzhu University, 2017(in Chinese).
    [21] ZHANG Z, JING R, HE S, et al. Coagulation of low temperature and low turbidity water:Adjusting basicity of polyaluminum chloride (PAC) and using chitosan as coagulant aid[J]. Separation and Purification Technology, 2018, 206:131-139.
    [22] RIJK S E D, DER G J H J, BLANKEN J G D. Bubble size in flotation thickening[J]. Water Research, 1994, 28(2):465-473.
    [23] COUTO H J B, NUNES D G, NEUMANN R, et al. Micro-bubble size distribution measurements by laser diffraction technique[J]. Minerals Engineering, 2009, 22(4):330-335.
  • 加载中
计量
  • 文章访问数:  1620
  • HTML全文浏览数:  1570
  • PDF下载数:  108
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-05-08
  • 刊出日期:  2018-12-15
李达, 张崇剑, 马文成, 韩洪军, 陈志强. 剩余污泥强化混凝气浮预处理煤气化废水[J]. 环境化学, 2018, 37(12): 2585-2595. doi: 10.7524/j.issn.0254-6108.2018050801
引用本文: 李达, 张崇剑, 马文成, 韩洪军, 陈志强. 剩余污泥强化混凝气浮预处理煤气化废水[J]. 环境化学, 2018, 37(12): 2585-2595. doi: 10.7524/j.issn.0254-6108.2018050801
LI Da, ZHANG Chongjian, MA Wencheng, HAN Hongjun, CHEN Zhiqiang. Pretreatment of coal gasification wastewater by excess sludge enhanced coagulation-flotation[J]. Environmental Chemistry, 2018, 37(12): 2585-2595. doi: 10.7524/j.issn.0254-6108.2018050801
Citation: LI Da, ZHANG Chongjian, MA Wencheng, HAN Hongjun, CHEN Zhiqiang. Pretreatment of coal gasification wastewater by excess sludge enhanced coagulation-flotation[J]. Environmental Chemistry, 2018, 37(12): 2585-2595. doi: 10.7524/j.issn.0254-6108.2018050801

剩余污泥强化混凝气浮预处理煤气化废水

  • 1.  哈尔滨工业大学环境学院, 城市水资源与水环境国家重点实验室, 哈尔滨, 150090;
  • 2.  中国市政工程中南设计研究总院有限公司, 武汉, 430000
基金项目:

国家重点研发计划(2016YFB0600502)和黑龙江省级别资助项目(GX17C003)资助.

摘要: 为解决低浑浊度煤气化含油废水混凝气浮药剂投加量大、效率低的问题,本文开展混凝剂污泥共投加提高气浮工艺除污染能力的研究.研究表明,剩余污泥的投加明显改善了混凝沉淀对油类污染物的去除,在剩余污泥投加量从0增加到1200 mg·L-1时,含油量去除率由28.1%提升至44.1%.聚合氯化铝(PAC)、聚丙烯酰胺(PAM)和剩余污泥的最适宜投加量分别为150、2、1200 mg·L-1.A/O工艺二沉池剩余污泥强化混凝气浮效果最佳,充分气浮反应后对含油量的去除率由46%提升至84%,且气浮池油水分离区微气泡的稳定性得到明显改善.

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回