碳纳米管与分子印迹结合修饰玻碳电极应用于氯霉素的快速测定
Rapid determination of chloramphenicol by carbon nanotubes and molecularly imprinted polymer modified glassy carbon electrode
-
摘要: 为了研究水环境中氯霉素(CAP)的快速检测方法,用单壁碳纳米管(SWCNTs)-纳米铜(CuNPs)复合物修饰玻碳电极(GCE),并结合分子印迹(MIP)技术,先后采用循环伏安法(CV)进行电极导电性测试,线性伏安法(LSV)对实验条件进行优化,差分脉冲伏安法(DPV)研究水溶液中CAP的电化学行为.研究结果表明,与GCE电极相比,修饰电极上CAP氧化还原电流信号明显增强,表明修饰电极对CAP具有较好的选择性,能加速电子传递.同时对洗脱液类型、缓冲溶液pH、扫描速度、富集时间及修饰物的负载量等实验条件进行了优化.在最佳条件下,发现CAP还原峰电流大小与其浓度在5-500 nmol·L-1范围内呈现良好的线性关系,线性方程为I(μA)=0.9204C+41.285(R2=0.9984),检出限为4.8 nmol·L-1(S/N=3),且该修饰电极具有良好的重现性和稳定性.将该修饰电极应用于实际样品分析时,氯霉素眼药水的加标回收率为95.1%-102.5%,实际地表水样的加标回收率为96.5%-102.1%.Abstract: In order to study the rapid detection method of chloramphenicol (CAP) in water environment, single\walled carbon nanotubes (SWCNTs) -nano-copper (CuNPs) composites were used to modify glassy carbon electrodes (GCE) combined with molecular imprinting polymer (MIP) technology. Cyclic voltammetry (CV) was used to conduct electrode conductivity test. Linear scan voltammetry (LSV) was used to optimize the experimental conditions. Differential pulse voltammetry (DPV) was used to study the electrochemical behavior of CAP in aqueous solution. The results show that the CAP redox current signal of the modified electrode was significantly enhanced compared with the GCE electrode, which indicated that the modified electrode has strong selectivity to CAP and accelerated electron transport. At the same time, the experimental conditions were optimized, such as the eluent type, the pH value of the buffer solution, the scanning speed, the enrichment time and the loading of the modifier. Under the optimal conditions, it was found that the peak current of CAP reduction showed a good linear relationship with the concentration in the range of 5-500 nmol·L-1. The linear equation is I(μA)=0.9204C + 41.285 (R2=0.9984). The limit is 4.8 nmol·L-1 (S/N=3), and the modified electrode has the good reproducibility and stability. When the modified electrode was applied to the actual sample analysis, the spiked recovery rate of chloramphenicol eye drops was 95.1%-102.5%, and spike recovery of the actual surface water sample was 96.5%-102.1%.
-
-
[1] 张丽君, 陆天虹, 李时银,等. 氯霉素分子印迹聚合膜电极的制备及氯霉素检测[J]. 应用化学, 2011, 28(3):338-342. ZHANG L J, LU T H, LI S Y, et al. Preparation of chloramphenicol molecularly imprinted polymer electrode and detection of chloramphenicol[J]. Chinese Journal of Applied Chemistry, 2011, 28(3):338-342.(in Chinese).
[2] 陈雅琼. 分子印迹-碳纳米管电极的制备及其对氯霉素的选择性检测[D]. 大连:大连理工大学, 2012. CHEN Y Q. Preparation of molecularly imprinted-carbon nanotube electrode and its selective detection of chloramphenicol[D]. Dalian University of Technology, Liaoning Province, 2012(in Chinese). [3] 王淑敏, 李照山, 屈建莹. 多壁碳纳米管修饰玻碳电极伏安法测定氯霉素[J]. 化学研究, 2007,18(3):83-86. WANG S M, LI Z S, QU J Y. Voltammetric determination of chloramphenicol by multi-walled carbon nanotubes modified glassy carbon electrode[J]. Chemical Research, 2007,18(3):83-86(in Chinese).
[4] ZHAO W, ZHANG R, XU S, et al. Molecularly imprinted polymeric nanoparticles decorated with Au NPs for highly sensitive and selective glucose detection[J]. Biosensors & Bioelectronics, 2017, 100:497-503. [5] 李欢欢, 常志显, 周文辉. 聚苯胺分子印迹膜电化学传感器检测氯霉素[J]. 化学研究, 2013, 24(6):611-615. LI H H, CHANG Z X, ZHOU W H. Detection of chloramphenicol by polyaniline molecularly imprinted membrane electrochemical sensor[J]. Chemical Research, 2013, 24(6):611-615(in Chinese).
[6] 邓飞, 唐柏彬, 张进忠,等. 碳纳米管修饰电极电催化还原去除废水中的氯霉素[J]. 环境科学, 2016, 37(7):2610-2617. DENG F, TANG B B, ZHANG J Z, et al. Electrocatalytic reduction of CNTs in wastewater by carbon nanotube modified electrode[J]. Environmental Science, 2016, 37(7):2610-2617(in Chinese).
[7] 罗世忠, 赵金龙, 陈怀银,等. 氧化石墨烯-自掺杂聚苯胺纳米复合材料高灵敏检测氯霉素[J].分析科学学报, 2016, 32(4):561-564. LUO S Z, ZHAO J L, CHEN H Y, et al. Graphene oxide-Self-doped polyaniline nanocomposites for sensitive detection of chloramphenicol[J]. Journal of Analytical Science, 2016, 32(4):561-564(in Chinese).
[8] 韩金土, 王兰, 宋小进. 一步电沉积纳米铜/石墨烯/壳聚糖复合膜修饰玻碳电极测定邻苯二酚[J]. 化学研究与应用, 2012, 24(7):1064-1068. HAN J T, WANG L, SONG X J. Determination of catechol by one-step electrodeposition of nano-copper/graphene/chitosan composite film modified glassy carbon electrode[J]. Chemical Research and Application, 2012, 24(7):1064-1068(in Chinese).
[9] YIN H, ZHOU Y, XU J, et al. Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenolA[J]. Anal Chim Acta, 2010,659(1-2):144-150. [10] 罗宿星, 代小容, 卢恒一, 等. 苏丹红Ⅰ在氧化石墨烯-多壁碳纳米管/离子液体修饰电极上的电化学行为[J]. 环境化学, 2012, 31(12):2014-2015. LUO S X, DAI X R, LU H Y, et al. Electrochemical behavior of sudan red i on graphene oxide-multiwalled carbon nanotubes/ionic liquid modified electrode[J]. Environmental Chemistry, 2012,31(12):2014-2015(in Chinese).
[11] 刘蓉, 钟桐生, 龙立平, 等. 石墨烯-单壁碳纳米管修饰分子印迹传感器测定黑茶中槲皮素[J]. 环境化学, 2016, 35(6):1280-1286. LIU R, ZHONG T S, LONG L P, et al. Determination of quercetin in black tea by graphene-single-walled carbon nanotube modified molecularly imprinted sensor[J]. Environmental Chemistry, 2016, 35(6):1280-1286(in Chinese).
[12] YANG G, ZHAO F. Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes@molecularly imprinted polymer[J]. Biosensors & Bioelectronics, 2015,64:416-422. [13] MUNAWAR A, TAHIR M A, SHAHEEN A, et al. Investigating nanohybrid material based on 3D CNTs@Cu nanoparticle composite and imprinted polymer for highly selective detection of chloramphenicol[J]. Journal of Hazardous Materials, 2017, 342:96-106. [14] CARROLL D L, REDLICH P, AJAYAN P M, et a1. Electronic structure and localized states at carbon nanotube tips[J]. Phys Rev Lett, 1997,78(14):2811-2814. [15] BARISCI J N, WALLACE G G, BAUGHNAM R H. Electrochemical characterization of single-welled carbon nanotube electodes[J]. Eleetroehem Soc, 2000,147(12):4580-4583. [16] 刘冬, 周娟, 万海勤, 等.碳纳米管负载Pd基催化剂对水中2,4-二氯酚的催化加氢脱氯[J]. 环境化学,2013,32(3):351-357. LIU D, ZHOU J, WAN H Q, et al. Catalytic hydrodechlorination of 2,4-dichlorophenol in water by carbon nanotubes supported Pd-based catalysts[J]. Environmental Chemistry, 2013,32(3):351-357(in Chinese).
-

计量
- 文章访问数: 1424
- HTML全文浏览数: 1411
- PDF下载数: 86
- 施引文献: 0