碳纳米管与分子印迹结合修饰玻碳电极应用于氯霉素的快速测定

贾真真, 解静芳, 王振涛, 姜洪进, 任浦慧. 碳纳米管与分子印迹结合修饰玻碳电极应用于氯霉素的快速测定[J]. 环境化学, 2019, 38(3): 513-521. doi: 10.7524/j.issn.0254-6108.2018080601
引用本文: 贾真真, 解静芳, 王振涛, 姜洪进, 任浦慧. 碳纳米管与分子印迹结合修饰玻碳电极应用于氯霉素的快速测定[J]. 环境化学, 2019, 38(3): 513-521. doi: 10.7524/j.issn.0254-6108.2018080601
JIA Zhenzhen, XIE Jingfang, WANG Zhentao, JIANG Hongjin, REN Puhui. Rapid determination of chloramphenicol by carbon nanotubes and molecularly imprinted polymer modified glassy carbon electrode[J]. Environmental Chemistry, 2019, 38(3): 513-521. doi: 10.7524/j.issn.0254-6108.2018080601
Citation: JIA Zhenzhen, XIE Jingfang, WANG Zhentao, JIANG Hongjin, REN Puhui. Rapid determination of chloramphenicol by carbon nanotubes and molecularly imprinted polymer modified glassy carbon electrode[J]. Environmental Chemistry, 2019, 38(3): 513-521. doi: 10.7524/j.issn.0254-6108.2018080601

碳纳米管与分子印迹结合修饰玻碳电极应用于氯霉素的快速测定

  • 基金项目:

    国家大气重污染成因与治理攻关项目(DQGG-05-11)和国家公益性行业(农业)科研专项(201103024)资助.

Rapid determination of chloramphenicol by carbon nanotubes and molecularly imprinted polymer modified glassy carbon electrode

  • Fund Project: Supported by the National Project on Causes and Control of Heavy Air Pollution(DQGG-05-11) and National Public Welfare Industry (Agriculture) Research Projects(201103024).
  • 摘要: 为了研究水环境中氯霉素(CAP)的快速检测方法,用单壁碳纳米管(SWCNTs)-纳米铜(CuNPs)复合物修饰玻碳电极(GCE),并结合分子印迹(MIP)技术,先后采用循环伏安法(CV)进行电极导电性测试,线性伏安法(LSV)对实验条件进行优化,差分脉冲伏安法(DPV)研究水溶液中CAP的电化学行为.研究结果表明,与GCE电极相比,修饰电极上CAP氧化还原电流信号明显增强,表明修饰电极对CAP具有较好的选择性,能加速电子传递.同时对洗脱液类型、缓冲溶液pH、扫描速度、富集时间及修饰物的负载量等实验条件进行了优化.在最佳条件下,发现CAP还原峰电流大小与其浓度在5-500 nmol·L-1范围内呈现良好的线性关系,线性方程为I(μA)=0.9204C+41.285(R2=0.9984),检出限为4.8 nmol·L-1(S/N=3),且该修饰电极具有良好的重现性和稳定性.将该修饰电极应用于实际样品分析时,氯霉素眼药水的加标回收率为95.1%-102.5%,实际地表水样的加标回收率为96.5%-102.1%.
  • 加载中
  • [1] 张丽君, 陆天虹, 李时银,等. 氯霉素分子印迹聚合膜电极的制备及氯霉素检测[J]. 应用化学, 2011, 28(3):338-342.

    ZHANG L J, LU T H, LI S Y, et al. Preparation of chloramphenicol molecularly imprinted polymer electrode and detection of chloramphenicol[J]. Chinese Journal of Applied Chemistry, 2011, 28(3):338-342.(in Chinese).

    [2] 陈雅琼. 分子印迹-碳纳米管电极的制备及其对氯霉素的选择性检测[D]. 大连:大连理工大学, 2012. CHEN Y Q. Preparation of molecularly imprinted-carbon nanotube electrode and its selective detection of chloramphenicol[D]. Dalian University of Technology, Liaoning Province, 2012(in Chinese).
    [3] 王淑敏, 李照山, 屈建莹. 多壁碳纳米管修饰玻碳电极伏安法测定氯霉素[J]. 化学研究, 2007,18(3):83-86.

    WANG S M, LI Z S, QU J Y. Voltammetric determination of chloramphenicol by multi-walled carbon nanotubes modified glassy carbon electrode[J]. Chemical Research, 2007,18(3):83-86(in Chinese).

    [4] ZHAO W, ZHANG R, XU S, et al. Molecularly imprinted polymeric nanoparticles decorated with Au NPs for highly sensitive and selective glucose detection[J]. Biosensors & Bioelectronics, 2017, 100:497-503.
    [5] 李欢欢, 常志显, 周文辉. 聚苯胺分子印迹膜电化学传感器检测氯霉素[J]. 化学研究, 2013, 24(6):611-615.

    LI H H, CHANG Z X, ZHOU W H. Detection of chloramphenicol by polyaniline molecularly imprinted membrane electrochemical sensor[J]. Chemical Research, 2013, 24(6):611-615(in Chinese).

    [6] 邓飞, 唐柏彬, 张进忠,等. 碳纳米管修饰电极电催化还原去除废水中的氯霉素[J]. 环境科学, 2016, 37(7):2610-2617.

    DENG F, TANG B B, ZHANG J Z, et al. Electrocatalytic reduction of CNTs in wastewater by carbon nanotube modified electrode[J]. Environmental Science, 2016, 37(7):2610-2617(in Chinese).

    [7] 罗世忠, 赵金龙, 陈怀银,等. 氧化石墨烯-自掺杂聚苯胺纳米复合材料高灵敏检测氯霉素[J].分析科学学报, 2016, 32(4):561-564.

    LUO S Z, ZHAO J L, CHEN H Y, et al. Graphene oxide-Self-doped polyaniline nanocomposites for sensitive detection of chloramphenicol[J]. Journal of Analytical Science, 2016, 32(4):561-564(in Chinese).

    [8] 韩金土, 王兰, 宋小进. 一步电沉积纳米铜/石墨烯/壳聚糖复合膜修饰玻碳电极测定邻苯二酚[J]. 化学研究与应用, 2012, 24(7):1064-1068.

    HAN J T, WANG L, SONG X J. Determination of catechol by one-step electrodeposition of nano-copper/graphene/chitosan composite film modified glassy carbon electrode[J]. Chemical Research and Application, 2012, 24(7):1064-1068(in Chinese).

    [9] YIN H, ZHOU Y, XU J, et al. Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenolA[J]. Anal Chim Acta, 2010,659(1-2):144-150.
    [10] 罗宿星, 代小容, 卢恒一, 等. 苏丹红Ⅰ在氧化石墨烯-多壁碳纳米管/离子液体修饰电极上的电化学行为[J]. 环境化学, 2012, 31(12):2014-2015.

    LUO S X, DAI X R, LU H Y, et al. Electrochemical behavior of sudan red i on graphene oxide-multiwalled carbon nanotubes/ionic liquid modified electrode[J]. Environmental Chemistry, 2012,31(12):2014-2015(in Chinese).

    [11] 刘蓉, 钟桐生, 龙立平, 等. 石墨烯-单壁碳纳米管修饰分子印迹传感器测定黑茶中槲皮素[J]. 环境化学, 2016, 35(6):1280-1286.

    LIU R, ZHONG T S, LONG L P, et al. Determination of quercetin in black tea by graphene-single-walled carbon nanotube modified molecularly imprinted sensor[J]. Environmental Chemistry, 2016, 35(6):1280-1286(in Chinese).

    [12] YANG G, ZHAO F. Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes@molecularly imprinted polymer[J]. Biosensors & Bioelectronics, 2015,64:416-422.
    [13] MUNAWAR A, TAHIR M A, SHAHEEN A, et al. Investigating nanohybrid material based on 3D CNTs@Cu nanoparticle composite and imprinted polymer for highly selective detection of chloramphenicol[J]. Journal of Hazardous Materials, 2017, 342:96-106.
    [14] CARROLL D L, REDLICH P, AJAYAN P M, et a1. Electronic structure and localized states at carbon nanotube tips[J]. Phys Rev Lett, 1997,78(14):2811-2814.
    [15] BARISCI J N, WALLACE G G, BAUGHNAM R H. Electrochemical characterization of single-welled carbon nanotube electodes[J]. Eleetroehem Soc, 2000,147(12):4580-4583.
    [16] 刘冬, 周娟, 万海勤, 等.碳纳米管负载Pd基催化剂对水中2,4-二氯酚的催化加氢脱氯[J]. 环境化学,2013,32(3):351-357.

    LIU D, ZHOU J, WAN H Q, et al. Catalytic hydrodechlorination of 2,4-dichlorophenol in water by carbon nanotubes supported Pd-based catalysts[J]. Environmental Chemistry, 2013,32(3):351-357(in Chinese).

  • 加载中
计量
  • 文章访问数:  1424
  • HTML全文浏览数:  1411
  • PDF下载数:  86
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-08-06
  • 刊出日期:  2019-03-15
贾真真, 解静芳, 王振涛, 姜洪进, 任浦慧. 碳纳米管与分子印迹结合修饰玻碳电极应用于氯霉素的快速测定[J]. 环境化学, 2019, 38(3): 513-521. doi: 10.7524/j.issn.0254-6108.2018080601
引用本文: 贾真真, 解静芳, 王振涛, 姜洪进, 任浦慧. 碳纳米管与分子印迹结合修饰玻碳电极应用于氯霉素的快速测定[J]. 环境化学, 2019, 38(3): 513-521. doi: 10.7524/j.issn.0254-6108.2018080601
JIA Zhenzhen, XIE Jingfang, WANG Zhentao, JIANG Hongjin, REN Puhui. Rapid determination of chloramphenicol by carbon nanotubes and molecularly imprinted polymer modified glassy carbon electrode[J]. Environmental Chemistry, 2019, 38(3): 513-521. doi: 10.7524/j.issn.0254-6108.2018080601
Citation: JIA Zhenzhen, XIE Jingfang, WANG Zhentao, JIANG Hongjin, REN Puhui. Rapid determination of chloramphenicol by carbon nanotubes and molecularly imprinted polymer modified glassy carbon electrode[J]. Environmental Chemistry, 2019, 38(3): 513-521. doi: 10.7524/j.issn.0254-6108.2018080601

碳纳米管与分子印迹结合修饰玻碳电极应用于氯霉素的快速测定

  • 1. 山西大学环境与资源学院, 太原, 030006
基金项目:

国家大气重污染成因与治理攻关项目(DQGG-05-11)和国家公益性行业(农业)科研专项(201103024)资助.

摘要: 为了研究水环境中氯霉素(CAP)的快速检测方法,用单壁碳纳米管(SWCNTs)-纳米铜(CuNPs)复合物修饰玻碳电极(GCE),并结合分子印迹(MIP)技术,先后采用循环伏安法(CV)进行电极导电性测试,线性伏安法(LSV)对实验条件进行优化,差分脉冲伏安法(DPV)研究水溶液中CAP的电化学行为.研究结果表明,与GCE电极相比,修饰电极上CAP氧化还原电流信号明显增强,表明修饰电极对CAP具有较好的选择性,能加速电子传递.同时对洗脱液类型、缓冲溶液pH、扫描速度、富集时间及修饰物的负载量等实验条件进行了优化.在最佳条件下,发现CAP还原峰电流大小与其浓度在5-500 nmol·L-1范围内呈现良好的线性关系,线性方程为I(μA)=0.9204C+41.285(R2=0.9984),检出限为4.8 nmol·L-1(S/N=3),且该修饰电极具有良好的重现性和稳定性.将该修饰电极应用于实际样品分析时,氯霉素眼药水的加标回收率为95.1%-102.5%,实际地表水样的加标回收率为96.5%-102.1%.

English Abstract

参考文献 (16)

返回顶部

目录

/

返回文章
返回