H2O2分次投加对Fenton氧化修复石油污染土壤及后续生物降解的影响

徐金兰, 郭阳, 刘博雅. H2O2分次投加对Fenton氧化修复石油污染土壤及后续生物降解的影响[J]. 环境化学, 2019, 38(6): 1266-1273. doi: 10.7524/j.issn.0254-6108.2018082005
引用本文: 徐金兰, 郭阳, 刘博雅. H2O2分次投加对Fenton氧化修复石油污染土壤及后续生物降解的影响[J]. 环境化学, 2019, 38(6): 1266-1273. doi: 10.7524/j.issn.0254-6108.2018082005
XU Jinlan, GUO Yang, LIU Boya. Impact of stepwise addition of H2O2 on Fenton oxidation and subsequent biodegradation of oil-contaminated soil[J]. Environmental Chemistry, 2019, 38(6): 1266-1273. doi: 10.7524/j.issn.0254-6108.2018082005
Citation: XU Jinlan, GUO Yang, LIU Boya. Impact of stepwise addition of H2O2 on Fenton oxidation and subsequent biodegradation of oil-contaminated soil[J]. Environmental Chemistry, 2019, 38(6): 1266-1273. doi: 10.7524/j.issn.0254-6108.2018082005

H2O2分次投加对Fenton氧化修复石油污染土壤及后续生物降解的影响

  • 基金项目:

    国家自然科学基金(51778524)资助.

Impact of stepwise addition of H2O2 on Fenton oxidation and subsequent biodegradation of oil-contaminated soil

  • Fund Project: Supported by the National Natural Science Foundation of China(51778524).
  • 摘要: Fenton化学氧化和生物联合修复可以有效提高土壤有机污染物的去除效率.本文考察了H2O2分次投加对Fenton氧化过程中,土壤有机物(SOM)氧化量、石油烃(TPH)去除量、营养物质释放情况以及后续生物修复过程中的营养利用情况和修复效果的影响.结果表明,H2O2分次投加可以有效减少SOM的氧化、提高TPH去除率并能促进后续生物修复.实验发现,当900 mmol·L-1 H2O2分4次投加时,Fenton氧化阶段SOM氧化率最低(1.86%)、TPH去除率最高(32.14%),且土著细菌的残余量也最高(5.0×106 CFU·g-1),这使得该体系营养物质在生物修复阶段得以充分利用,生物去除率高达38%,总TPH去除率达到70%,在4种投加方式下是最高的.H2O2分次投加的Fenton氧化方式是提高TPH去除率并促进后续生物降解的有效方法.
  • 加载中
  • [1] 惠云芳, 王鸿飞. 石油污染土壤的生物修复研究进展[J]. 西北农业学报, 2018, 27(4):451-458.

    HUI Y F, WANG H F. Research progress in bioremediation of petroleum contaminated soil[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2018, 27(4):451-458(in Chinese).

    [2]
    [3] TANG J C, WANG M, WANG F, et al. Eco-toxicity of petroleum hydrocarbon contaminated soil[J]. Journal of Environmental Sciences, 2011, 23(5):845-851.
    [4] TRELLU C, MILTNER A, GALLO R, et al. Characteristics of PAH tar oil contaminated soils-Black particles, resins and implications for treatment strategies[J]. Journal of Hazardous Materials, 2016, 327:206-215.
    [5] EL-SHESHTAWY H S, KHALIL N M, AHMED W, et al. Monitoring of oil pollution at Gemsa Bay and bioremediation capacity of bacterial isolates with biosurfactants and nanoparticles[J]. Marine Pollution Bulletin, 2014, 87(1/2):191-200.
    [6] 李援, 王亭, 王岽, 等. 石油烃污染土壤微生物修复促进技术[J]. 化工环保, 2018, 38(3):349-352.

    LI Y, WANG T, WANG D, et al. Microbial remediation technology for petroleum hydrocarbon contaminated soil[J]. Environmental Protection of Chemical Industry, 2018, 38(3):349-352(in Chinese).

    [7] MARGESIN R, HAMMERLE M, TSCHERKO D. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil:Effects of hydrocarbon concentration, fertilizers, and incubation time[J]. Microbial Ecology, 2007, 53(2):259-269.
    [8] 胡晓芳, 夏福军, 朱南文, 等. 原油污染土壤的生物法修复效果研究[J]. 环境化学, 2006, 25(5):593-597.

    HU X F, XIA F J, ZHU N W, et al. Research on bioremediation effect of crude oil contaminated soil[J]. Environmental Chemistry, 2006, 25(5):593-597(in Chinese).

    [9] FERGUSON S H, WOINARSKI A Z, SNAPE I, et al. A field trial of in situ chemical oxidation to remediate long-term diesel contaminated Antarctic soil[J]. Cold Regions Science & Technology, 2004, 40(1):47-60.
    [10] FLOTRON V, DELTEIL C, PADELLEC Y, et al. Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton's reagent process[J]. Chemosphere, 2005, 59(10):1427-1437.
    [11] WATTS R J, STANTON P C, HOWSAWKENG J, et al. Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide[J]. Water Research, 2002. 36(17):4283-4292.
    [12] 李方敏,柳红霞. Fenton氧化法修复石油污染土壤的研究进展[J]. 环境化学, 2012, 31(11):1759-1766.

    LI F M, LIU H X. Research progress of Fenton oxidation for remediation of petroleum contaminated soil[J]. Environmental Chemistry, 2012, 31(11):1759-1766(in Chinese).

    [13] WU G, ZHU X, JI H, et al. Molecular modeling of interactions between heavy crude oil and the soil organic matter coated quartz surface[J]. Chemosphere, 2015, 119:242-249.
    [14] 纪录, 张晖. 原位化学氧化法在土壤和地下水修复中的研究进展[J]. 环境工程学报, 2003, 4(6):37-42.

    JI L, ZHANG H. Research progress of in situ chemical oxidation in soil and groundwater remediation[J]. Chinese Journal of Environmental Engineering, 2003, 4(6):37-42(in Chinese).

    [15] LI X D, SCHWARTZ F W. DNAPL remediation with in situ chemical oxidation using potassium permanganate. Part I. Mineralogy of Mn oxide and its dissolution in organic acids[J]. Journal of Contaminant Hydrology, 2004, 68(3-4):269-287.
    [16] 乔俊, 陈威, 张承东. 添加不同营养助剂对石油污染土壤生物修复的影响[J]. 环境化学, 2010, 29(1):6-11.

    QIAO J, CHEN W, ZHANG C D. Effect of adding different nutrient additives on bioremediation of petroleum contaminated soil[J]. Environmental Chemistry, 2010, 29(1):6-11(in Chinese).

    [17]
    [18] XU J L, KONG F X, SONG S H, et al. Effect of Fenton pre-oxidation on mobilization of nutrients and efficient subsequent bioremediation of crude oil-contaminated soil[J]. Chemosphere, 2017, 180:1-10.
    [19] XU J L, PANCRAS T, GROTENHUIS T. Chemical oxidation of cable insulating oil contaminated soil[J]. Chemosphere, 2011, 84:272-277.
    [20] 朱广伟, 秦伯强, 高光, 等. 灼烧对沉积物烧失量及铁、磷测定的影响[J]. 分析试验室, 2004, 23(9):72-76.

    ZHU G W, QIN B Q, GAO G, et al. Effect of ignition on determination of loss of ignition and iron and phosphorus in sediments[J]. Chinese Journal of Analysis Laboratory, 2004, 23(9):72-76(in Chinese).

    [21] LIN T C, PAN P T, CHENG S S, Ex situ bioremediation of oil-contaminated soil[J]. Journal of Hazardous Materials, 2010, 176:27-34.
    [22] XU J L, XIN L, HUANG T L, et al. Enhanced bioremediation of oil contaminated soil by graded modified Fenton oxidation[J]. Journal of Environmental Sciences, 2011, 23:1873-1879.
    [23] SUTTON N B, GROTENHUIS T, RIJNAARTS H H M, Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil[J]. Chemosphere, 2014, 97:64-70.
    [24] KIM I, LEE M, Pilot scale feasibility study for in-situ chemical oxidation using H2O2 solution conjugated with biodegradation to remediate a diesel contaminated site[J]. Journal of Hazardous Materials, 2012, 241-242(1):173-181.
    [25] JHO E H, RYU H, SHIN D, et al. Prediction of landfarming period using degradation kinetics of petroleum hydrocarbons:test with artificially contaminated and field-aged soils and commercially available bacterial cultures[J]. Journal of Soils & Sediments, 2014, 14(1):138-145.
    [26] LU M, ZHANG Z, WEI Q, et al. Remediation of petroleum-contaminated soil after composting by sequential treatment with Fenton-like oxidation and biodegradation[J]. Bioresource Technology, 2010, 101:2106-2113.
    [27] GONG X B, Remediation of weathered petroleum oil-contaminated soil using a combination of biostimulation and modified Fenton oxidation[J]. International Biodeterioration & Biodegradation, 2012, 70(5):89-95.
    [28] BISSEY L L, SMITH J L, WATTS R J. Soil organic matter-hydrogen peroxide dynamics in the treatment of contaminated soils and groundwater using catalyzed H2O2 propagations (modified Fenton's reagent)[J]. Water Research, 2006, 40:2477-2484.
    [29] QIN J, LI Y, LI S, et al. Potential effects of rainwater-borne H2O2 on competitive degradation of herbicides and in the presence of humic acid[J]. Chemosphere, 2016, 170:146-152.
    [30] CAJAL-MARINOSA P, REICH O, AUHKANEN T. Treatment of composted soils contaminated with petroleum hydrocarbons using chemical oxidation followed by enhanced aerobic bioremediation[J]. Journal of Advanced Oxidation Technologies, 2012, 15:217-223.
    [31] 徐金兰, 雷绒娟, 邓海鑫, 等. Fenton改性对土壤有机物氧化及修复石油污染土壤的影响[J]. 石油学报, 2014, 30(6):1113-1118.

    XU J L, LEI R J, DENG H X, et al. Effects of Fenton modification on oxidation of soil organic matter and remediation of petroleum contaminated soil[J]. Acta Petrolei Sinica|Acta Petrol Sin, 2014, 30(6):1113-1118(in Chinese).

    [32] CHU W, CHAN KH, KWAN CY, et al. Degradation of atrazine by modified stepwise-Fenton's processes[J]. Chemosphere, 2007, 67(4):755-761.
    [33] 杜瑛殉, 年跃刚, 周明华, 等. 类Fenton降解对氯苯酚中Fe3+的还原-两种途径及其作用[J]. 浙江大学学报, 2005, 39(10):1618-1622.

    DU Y X, NIAN Y G, ZHOU M H, et al. Reduction of Fe3+ in chlorophenol by Fenton like process-two ways and their functions[J]. Journal of Zhejiang University, 2005, 39(10):1618-1622(in Chinese).

  • 加载中
计量
  • 文章访问数:  3295
  • HTML全文浏览数:  3295
  • PDF下载数:  52
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-08-20
  • 刊出日期:  2019-06-15

H2O2分次投加对Fenton氧化修复石油污染土壤及后续生物降解的影响

  • 1. 西安建筑科技大学, 西安, 710055
基金项目:

国家自然科学基金(51778524)资助.

摘要: Fenton化学氧化和生物联合修复可以有效提高土壤有机污染物的去除效率.本文考察了H2O2分次投加对Fenton氧化过程中,土壤有机物(SOM)氧化量、石油烃(TPH)去除量、营养物质释放情况以及后续生物修复过程中的营养利用情况和修复效果的影响.结果表明,H2O2分次投加可以有效减少SOM的氧化、提高TPH去除率并能促进后续生物修复.实验发现,当900 mmol·L-1 H2O2分4次投加时,Fenton氧化阶段SOM氧化率最低(1.86%)、TPH去除率最高(32.14%),且土著细菌的残余量也最高(5.0×106 CFU·g-1),这使得该体系营养物质在生物修复阶段得以充分利用,生物去除率高达38%,总TPH去除率达到70%,在4种投加方式下是最高的.H2O2分次投加的Fenton氧化方式是提高TPH去除率并促进后续生物降解的有效方法.

English Abstract

参考文献 (33)

目录

/

返回文章
返回