贵州草海湿地不同水深梯度下沉积物铁形态分布特征

杨杰, 夏品华, 林陶, 吴胜利, 刘文, 陈艳明. 贵州草海湿地不同水深梯度下沉积物铁形态分布特征[J]. 环境化学, 2019, 38(4): 813-821. doi: 10.7524/j.issn.0254-6108.2018111301
引用本文: 杨杰, 夏品华, 林陶, 吴胜利, 刘文, 陈艳明. 贵州草海湿地不同水深梯度下沉积物铁形态分布特征[J]. 环境化学, 2019, 38(4): 813-821. doi: 10.7524/j.issn.0254-6108.2018111301
YANG Jie, XIA Pinhua, LIN Tao, WU Shengli, LIU Wen, CHENG Yanming. Distribution characteristics of iron speciation in sediments of Guizhou Caohai wetland under different water depths[J]. Environmental Chemistry, 2019, 38(4): 813-821. doi: 10.7524/j.issn.0254-6108.2018111301
Citation: YANG Jie, XIA Pinhua, LIN Tao, WU Shengli, LIU Wen, CHENG Yanming. Distribution characteristics of iron speciation in sediments of Guizhou Caohai wetland under different water depths[J]. Environmental Chemistry, 2019, 38(4): 813-821. doi: 10.7524/j.issn.0254-6108.2018111301

贵州草海湿地不同水深梯度下沉积物铁形态分布特征

  • 基金项目:

    贵州省重大科技专项课题(20163022-2),贵州省科技合作计划资助项目(20167200),贵州省林业科技项目(201411),贵州师范大学2017年博士科研启动项目和国家自然科学基金(41867056)资助.

Distribution characteristics of iron speciation in sediments of Guizhou Caohai wetland under different water depths

  • Fund Project: Supported by the Special Science and Technology Project in Guizhou Province (20163022-2),Guizhou Science and Technology Cooperation Program Funding Project (20167200),Guizhou Forestry Science and Technology Project (201411),Guizhou Normal University 2017 Ph.D.Research Initiative and National Natural Science Foundation of China (41867056)
  • 摘要: 为了研究水文条件对湿地沉积物中铁赋存形态分布的影响,采用Tessier五步连续提取法对贵州草海不同水深梯度下沉积物中铁各形态进行研究.结果表明,草海湿地沉积物中总铁含量在22.8-46.2 g·kg-1之间,平均值为37.06 g·kg-1,随着水深升高整体呈下降趋势.草海湿地沉积物中,各形态铁含量大小为残渣态(RES-Fe:7.16-41.22 g·kg-1)>有机结合态(OM-Fe:1.68-13.94 g·kg-1)>铁锰氧化物结合态(RED-Fe:2.29-6.96 g·kg-1)>碳酸盐结合态(CARB-Fe:0.004-0.095 g·kg-1)>可交换态(EXC-Fe:0.002-0.004 g·kg-1);各形态铁含量对水深变化响应不一致,RES-Fe、EXC-Fe和Tot-Fe含量随水深加深而减少,RED-Fe和OM-Fe含量随水深加深而增高,CARB-Fe含量无明显变化规律;水文条件影响铁形态组成,季节性积水的S1和S2样点铁含量较高,仅以RES-Fe为主,占总量的87%-91%,而积水较深且长期淹水的S3和S4铁含量较低,以OM-Fe和RES-Fe为主,二者之和占总量的81%-85%.湿地沉积物中铁含量及其形态组成分布会因为水深变化而不同,铁的生物有效性也会因此发生改变,抬升水位有利于提高铁的生物有效性.
  • 加载中
  • [1] 吕宪国, 刘晓辉. 中国湿地研究进展——献给中国科学院东北地理与农业生态研究所建所50周年[J]. 地理科学, 2008, 28(3):301-308.

    LU X G, LIU X H. Wetland research progresses in China—Dedicated to the 50th anniversary of northeast institute of geography and agroecology, CAS[J]. Scientia Geographica Sinica 2008, 28(3):301-308(in Chinese).

    [2] 段勋, 罗敏, 黄佳芳,等. 闽江河口潮滩沼泽湿地沉积物铁的形态和空间分布[J]. 环境科学学报, 2017, 37(10):3780-3791.

    DUAN X, LUO M, HUANG J F, et al. Fractions and the spatial distribution of iron in the sediments of tidal marsh in the Min River Estuary,Southeast China[J]. Acta Scientiae Circumstantiae, 2017, 37(10):3780-3791(in Chinese).

    [3] 姜明, 吕宪国, 杨青,等. 湿地铁的生物地球化学循环及其环境效应[J]. 土壤学报, 2006, 43(3):493-499.

    JIANG M, LU X G, YANG Q, et al. Iron biogeochemical cycle and its environmental effect in wetlands[J]. Acta Pedologica Sinica, 2006, 43(3):493-499(in Chinese).

    [4] BARRAL M T, ARIAS M, GUERIF J. Effects of iron and organic matter on the porosity and structural stability of soil aggregates[J]. Soil & Tillage Research, 1998, 46(3/4):261-272.
    [5] 邹元春, 吕宪国, 姜明. 不同水文情势下环形湿地土壤铁的时空分布特征[J]. 环境科学, 2009, 30(7):2059-2064.

    ZOU Y CH, LU X G, JIANG M. Spatiotemporal distribution characteristics of soil iron in the annular wetland under different water regime[J]. Environmental Science, 2009, 30(7):2059-2064(in Chinese).

    [6] 李云飞, 杨艳芳, 王娅娅,等. 不同退耕年限下菜子湖湿地土壤铁形态变化[J]. 环境科学学报, 2015, 35(10):3234-3241.

    LI Y F, YANG Y F, WANG Y Y, et al. Characteristics of soil iron forms in wetlands with various restoration ages around the Caizi Lake,Anhui Province[J]. Acta Scientiae Circumstantiae, 2015, 35(10):3234-3241(in Chinese).

    [7] PERYER-FURSDON J, ABELL J M, CLARKE D, et al. Spatial variability in sediment phosphorus characteristics along a hydrological gradient upstream of Lake Rotorua, New Zealand[J]. Environmental Earth Sciences, 2015, 73(4):1573-1585.
    [8] 司友斌, 王娟. 异化铁还原对土壤中重金属形态转化及其有效性影响[J]. 环境科学, 2015,36(9):3533-3542.

    SI Y B, WANG J. Influence of dissimilatory iron reduction on the speciation and bioavailability of heavy metals in soil[J]. Environmental Science, 2015,36(9):3533-3542(in Chinese).

    [9] 马双丽, 倪兆奎, 王圣瑞,等. 鄱阳湖沉积物有机磷形态及对水位变化响应[J]. 环境科学学报, 2016, 36(10):3607-3614.

    MA SH L, Li ZH G, WANG SH R, et al. Organic phosphorus forms in sediments and their relationship with the change of water level in Poyang Lake[J]. Acta Scientiae Circumstantiae, 2016, 36(10):3607-3614(in Chinese).

    [10] 钢迪嘎, 齐维晓, 刘会娟,等. 南水北调对密云水库水位变幅带土壤磷释放量的影响[J]. 环境科学学报, 2017, 37(10):3813-3822.

    GANG D G, QI W X, LIU H J, et al. Impact of south-to-north water diversion project on phosphorus release from water level fluctuating zone at Miyun reservior[J]. Acta Scientiae Circumstantiae, 2017, 37(10):3813-3822(in Chinese).

    [11] 王雨山, 何锦,李海学,等. 三江平原典型区地下水铁的动态变化[J]. 环境工程, 2017, 35(9):48-52.

    WANG Y S, HE J, LI H X, et al. Dynamic changes of Groundwater iron in a typical area of Sanjiang plain[J]. Environmental Engineering, 2017,35(9):48-52(in Chinese).

    [12] 瞿文川, 余源盛. 鄱阳湖湿地土壤中Fe、Mn的迁移特征及其与水位周期变动的关系[J]. 湖泊科学, 1996, 8(1):35-42.

    QU W C, YU Y S[J]. The migration of Fe and Mn and its relation to periodic variation of water level in Poyang lake wetland soil[J]. Journal of Lake Sciences, 1996, 8(1):35-42 (in Chinese).

    [13] PONNAMPERUMA F N. The Chemistry of Submerged Soils[J]. Advances in Agronomy, 1972, 24:29-96.
    [14] GUERⅡNOT M L, YI Y. Iron: Nutritious, noxious, and not readily available[J]. Plant Physiology, 1994, 104(3):815-820.
    [15] WEDEPOHL K H. The composition of the continental crust[J]. Mineralogical Magazine, 1995, 58(7):1217-1232
    [16] 郭晶, 王丑明, 黄代中, 等. 洞庭湖水污染特征及水质评价[J].环境化学,2019,38(1):152-160.

    GUO J, WANG CH M, HUANG D ZH, et al. Pollution characterization and water quality assessment of Dongting lake[J/OL]. Environmental Chemistry, 2019,38(1):152-160(in Chinese).

    [17] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7):844-851.
    [18] 夏品华, 薛飞, 孔祥亮, 等. 贵州草海湿地农田渠系水质空间分异特征及影响分析[J]. 环境化学, 2012, 31(8):1201-1207.

    XIA P H, XUE F, KONG X L, et al. Spatial characteristics and impact of water quality in agricultural ditch system of Caohai wetland in the Guizhou plateau, China[J]. Environmental Chemistry, 2012, 31(8):1201-1207(in Chinese).

    [19] 黎杨, 厦品华, 葛皓,等. 高原湖泊湿地草海沉积物胞外酶与有机碳的时空动态[J]. 中国环境科学, 2017, 37(7):2723-2730.

    LI Y, XIA P H, GE H, et al. Temporal and spatial dynamics of enzyme activities and organic carbon in sediments of Caohai wetland of Guizhou Plateau[J]. China Environmental Science, 2017, 37(7):2723-2730(in Chinese).

    [20] WETZEL R G. Limnology: Lake and river ecosystems[J]. Eos Transactions American Geophysical Union, 2001, 21(2):1-9.
    [21] 刘红磊, 尹澄清, 唐运平. 太湖梅梁湾岸边带底泥中重金属的形态与分布[J]. 中国环境科学, 2010, 30(3):389-394.

    LIU H L, YIN CH Q, TANG Y P. Distribution and speciation of heavy metals in sediments at a littoral zone of Meiliang Bay of Taihu Lake[J]. China Environmental Science, 2010, 30(3):389-394(in Chinese).

    [22] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. LU R S H. Methods of soil agricultural chemistry analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000(in Chinese).
    [23] COLOMBO C, PALUMBO G, HE J Z, et al. Review on iron availability in soil: Interaction of Fe minerals, plants, and microbes[J]. Journal of Soils & Sediments, 2014, 14(3):538-548.
    [24] 雷鸣, 廖柏寒, 秦普丰. 土壤重金属化学形态的生物可利用性评价[J]. 生态环境学报, 2007, 16(5):1551-1556.

    LEI M, LIAO B H, QIN P F. Assessment of bioavailability of heavy metal in contaminated soils with chemical fractionation[J]. Ecology and Environmental Sciences, 2007, 16(5):1551-1556(in Chinese).

    [25] 蒋廷惠, 胡霭堂. 土壤中锌,铜,铁,锰的形态与有效性的关系[J]. 土壤通报, 1989,10(5):228-231.

    JIANG T H, HU AI T. Relationship between availability and the forms of Zn, Cu, Fe and Mn in soil[J]. Chinese Journal of Soil Science, 1989,10(5):228-231(in Chinese).

    [26] 王昌全, 李冰, 龚斌,等. 西昌市土壤Fe、Mn、Cu、Zn有效性评价及其影响因素分析[J]. 土壤通报, 2010, 41(2):447-451.

    WANG CH Q, LI B, GONG B, et al. Study on the bioavailability and impact factors of Fe, Mn, Cu and Zn in the Soils of Xichang City[J]. Chinese Journal of Soil Science, 2010, 41(2):447-451(in Chinese).

    [27] 郑真, 杨艳芳, 孔令柱,等. 退耕还湖后菜子湖湿地土壤理化性质及微生物量变化[J]. 长江流域资源与环境, 2014, 23(6):821-826.

    ZHENG ZH, YANG Y F, KONG L Z, et al. Changes of soil physical and chemical properties and microbial biomass in wetlands retuning farmland and to lake in Caizi Lake, Anhui Province[J]. Resources and Environment in the Yangtze Basin, 2014, 23(6):821-826(in Chinese).

    [28] 孔令柱, 刘爽, 郑真,等. 不同退耕年限下安庆沿江湿地土壤氮、磷变化研究[J]. 水土保持研究, 2014, 21(1):43-46.

    KONG L ZH, LIU SH, ZHENG ZH, et al. Changes of the soil nitrogen and phosphorus in different periods of abandoned farming wetlands along the Yangtze River in Anqing, Anhui Province[J]. Research of Soil and Water Conservation, 2014, 21(1):43-46(in Chinese).

    [29] ATTA S K, MOHAMMED S A, CLEEMPUT O V, et al. Transformations of iron and manganese under controlled E h, E h -pH conditions and addition of organic matter[J]. Soil Technology, 1996, 9(4):223-237.
    [30] 郎春燕, 林龙飞, 魏建军,等. 成都某地稻田水—土界面上铁形态的时空分布特征[J]. 西北农业学报, 2013, 22(10):171-175.

    LANG CH Y, LIN L F, WEI J J, et al. Spatial and temporal distribution of iron species at soil-water interface of rice paddy field in Chengdu[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(10):171-175(in Chinese).

    [31] MARTINEZ C E, MOTTO H L. Solubility of lead, zinc and copper added to mineral soils[J]. Environmental Pollution, 2000, 107(1):153-8.
    [32] 王图锦, 吉芳英, 何强,等. 三峡库区土壤铁异化还原及其对铁形态影响[J]. 重庆大学学报, 2011, 34(1):100-104.

    WANG T J, JI F Y, HE Q, et al. Dissimilatory iron reduction processes of soil from Three Gorges Reservoir area and its effcet on chemical form of Fe[J]. Journal of Chongqing University, 2011, 34(1):100-104(in Chinese).

    [33] RIENZI E A, MATOCHA C J, Grove J H, et al. Enrichment ratio of poorly crystallized iron mobilized with clay/silt-sized particles released via interrill erosion[J]. Catena, 2015, 124:130-137.
    [34] 杨文斌, 唐皓, 韩超,等. 太湖沉积物铁形态分布特征及磷铁相关性分析[J]. 中国环境科学, 2016, 36(4):1145-1156.

    YANG W B, TANG H, HAN CH, et al. Distribution of iron forms and their correlations analysis with phosphorus forms in the sedimentary profiles of Taihu Lake[J]. China Environmental Science, 2016, 36(4):1145-1156(in Chinese).

    [35] 曹会聪, 王金达, 张学林. BCR法在污染农田黑土重金属形态分布研究中的应用[J]. 水土保持学报, 2006, 20(6):163-166.

    CAO H C, WANG J D, ZHANG X L. Application of sequential extraction of bcr to forms distribution of heavy metals in polluted black soil[J]. Journal of Soil and Water Conservation, 2006, 20(6):163-166(in Chinese).

    [36] 郑太辉, 迟光宇, 史奕,等. 开垦对三江平原别拉洪河流域土壤Fe活性的影响[C]. 全国农业环境科学学术研讨会, 2009:89-92. ZHENG T H, CHI G Y, SHI Y, et al. Effects of Reclamation on soil iron activity in bielahong River Basin[C]. National Symposium on agricultural and Environmental Sciences, 2009:89

    -92(in Chinese).

    [37] 梁硕, 李月芬, 汤洁,等. 吉林西部土壤铁形态分布及其与土壤性质的关系研究[J]. 世界地质, 2016, 35(2):593-600.

    LIANG SH, LI Y F, TANG J, et al. Study on form distribution of soil iron in western Jilin and its correlation with soil properties[J]. Global Geology, 2016, 35(2):593-600(in Chinese).

    [38] 王妍, 蔡体久, 满秀玲,等. 小兴安岭典型湿地土壤Fe化学形态空间分布及干扰对其影响[J]. 水土保持学报, 2010, 25(6):153-157.

    WANG Y, CAI T J, MAN X L, et al. Speciation distribution of Fe and effects of disturbance in main wetland types soil in Xiaoxinga'anling[J]. Journal of Soil and Water Conservation, 2010, 25(6):153-157(in Chinese).

    [39] 武玫玲. 土壤矿质胶体的可变电荷表面对重金属离子的专性吸附[J]. 土壤通报, 1985, 16(2):16-22.

    WU M L. Specific adsorption of heavy metal ions on variable charge surfaces of soil mineral colloids[J]. Chinese Journal of Soil Science, 1985, 16(2):16-22(in Chinese).

    [40] 王改改, 傅瓦利, 魏朝富,等. 消落带土壤铁的形态变化及其对有效磷的影响[J]. 土壤通报, 2008, 39(1):66-70.

    WANG G G, FU W L, WEI ZH F, et al. Iron transformation and phosphorus availability in a drawdown area of Three Gorges Reservoir[J]. Chinese Journal of Soil Science, 2008, 39(1):66-70(in Chinese).

    [41] 地里拜尔·苏里坦, 艾尼瓦尔·买买提, 蔺娟. 土壤中铁锰的形态分布及其有效性研究[J]. 生态学杂志, 2006, 25(2):155-160.

    DILBAR·S, ANWAR·M, LIN J. Soil iron-and manganese forms and their availability to plants[J]. Chinese Journal of Ecology, 2006, 25(2):155-160(in Chinese).

  • 加载中
计量
  • 文章访问数:  1653
  • HTML全文浏览数:  1630
  • PDF下载数:  46
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-11-13
  • 刊出日期:  2019-04-15
杨杰, 夏品华, 林陶, 吴胜利, 刘文, 陈艳明. 贵州草海湿地不同水深梯度下沉积物铁形态分布特征[J]. 环境化学, 2019, 38(4): 813-821. doi: 10.7524/j.issn.0254-6108.2018111301
引用本文: 杨杰, 夏品华, 林陶, 吴胜利, 刘文, 陈艳明. 贵州草海湿地不同水深梯度下沉积物铁形态分布特征[J]. 环境化学, 2019, 38(4): 813-821. doi: 10.7524/j.issn.0254-6108.2018111301
YANG Jie, XIA Pinhua, LIN Tao, WU Shengli, LIU Wen, CHENG Yanming. Distribution characteristics of iron speciation in sediments of Guizhou Caohai wetland under different water depths[J]. Environmental Chemistry, 2019, 38(4): 813-821. doi: 10.7524/j.issn.0254-6108.2018111301
Citation: YANG Jie, XIA Pinhua, LIN Tao, WU Shengli, LIU Wen, CHENG Yanming. Distribution characteristics of iron speciation in sediments of Guizhou Caohai wetland under different water depths[J]. Environmental Chemistry, 2019, 38(4): 813-821. doi: 10.7524/j.issn.0254-6108.2018111301

贵州草海湿地不同水深梯度下沉积物铁形态分布特征

  • 1.  贵州师范大学贵州省山地环境信息系统与生态环境保护重点实验室, 贵阳, 550001;
  • 2.  贵州师范大学高原湿地生态与环境研究中心, 贵阳, 550001;
  • 3.  贵州草海国家级自然保护区管理委员会, 威宁, 553100
基金项目:

贵州省重大科技专项课题(20163022-2),贵州省科技合作计划资助项目(20167200),贵州省林业科技项目(201411),贵州师范大学2017年博士科研启动项目和国家自然科学基金(41867056)资助.

摘要: 为了研究水文条件对湿地沉积物中铁赋存形态分布的影响,采用Tessier五步连续提取法对贵州草海不同水深梯度下沉积物中铁各形态进行研究.结果表明,草海湿地沉积物中总铁含量在22.8-46.2 g·kg-1之间,平均值为37.06 g·kg-1,随着水深升高整体呈下降趋势.草海湿地沉积物中,各形态铁含量大小为残渣态(RES-Fe:7.16-41.22 g·kg-1)>有机结合态(OM-Fe:1.68-13.94 g·kg-1)>铁锰氧化物结合态(RED-Fe:2.29-6.96 g·kg-1)>碳酸盐结合态(CARB-Fe:0.004-0.095 g·kg-1)>可交换态(EXC-Fe:0.002-0.004 g·kg-1);各形态铁含量对水深变化响应不一致,RES-Fe、EXC-Fe和Tot-Fe含量随水深加深而减少,RED-Fe和OM-Fe含量随水深加深而增高,CARB-Fe含量无明显变化规律;水文条件影响铁形态组成,季节性积水的S1和S2样点铁含量较高,仅以RES-Fe为主,占总量的87%-91%,而积水较深且长期淹水的S3和S4铁含量较低,以OM-Fe和RES-Fe为主,二者之和占总量的81%-85%.湿地沉积物中铁含量及其形态组成分布会因为水深变化而不同,铁的生物有效性也会因此发生改变,抬升水位有利于提高铁的生物有效性.

English Abstract

参考文献 (41)

返回顶部

目录

/

返回文章
返回