金属卟啉衍生物催化降解污染物研究进展

赵晓娜, 张鹏, 赵义斐, 张文豪, 孟令鲲, 侯慧杰, 刘冰川, 杨家宽, 胡敬平. 金属卟啉衍生物催化降解污染物研究进展[J]. 环境化学, 2019, (9): 2067-2080. doi: 10.7524/j.issn.0254-6108.2018111307
引用本文: 赵晓娜, 张鹏, 赵义斐, 张文豪, 孟令鲲, 侯慧杰, 刘冰川, 杨家宽, 胡敬平. 金属卟啉衍生物催化降解污染物研究进展[J]. 环境化学, 2019, (9): 2067-2080. doi: 10.7524/j.issn.0254-6108.2018111307
ZHAO Xiaona, ZHANG Peng, ZHAO Yifei, ZHANG Wenhao, MENG Lingkun, HOU Huijie, LIU Bingchuan, YANG Jiakuan, HU Jingping. The degradation of pollutants catalyzed by metalloporphyrin derivatives[J]. Environmental Chemistry, 2019, (9): 2067-2080. doi: 10.7524/j.issn.0254-6108.2018111307
Citation: ZHAO Xiaona, ZHANG Peng, ZHAO Yifei, ZHANG Wenhao, MENG Lingkun, HOU Huijie, LIU Bingchuan, YANG Jiakuan, HU Jingping. The degradation of pollutants catalyzed by metalloporphyrin derivatives[J]. Environmental Chemistry, 2019, (9): 2067-2080. doi: 10.7524/j.issn.0254-6108.2018111307

金属卟啉衍生物催化降解污染物研究进展

    通讯作者: 胡敬平, E-mail: hujp@hust.edu.cn
  • 基金项目:

    科技部国家重点研发计划(2018YFC1900105),国家级大学生创新创业训练计划和中央高校基本科研业务费专项资金(2017KFYXJJ217)资助.

The degradation of pollutants catalyzed by metalloporphyrin derivatives

    Corresponding author: HU Jingping, hujp@hust.edu.cn
  • Fund Project: Supported by National Key Research and Development Program of China (2018YFC1900105), National Undergraduate Innovation and Entrepreneurship Training Program and Fundamental Research Funds for Central Universities (2017KFYXJJ217).
  • 摘要: 由于工业化和城市化的快速发展而带来的环境问题已经引起了人们的广泛关注.土壤和地下水中不断排放的持久性污染物,对人们的健康造成了极大的威胁,因此需要更加有效的策略来解决.卟啉类物质由于具有特殊的氧化还原性质和光敏性,已经被广泛用于有机污染物的去除.本文总结了金属卟啉的最新研究进展,对其在类芬顿和光催化领域的应用进行了详细的介绍,并且讨论了高价铁氧卟啉物种,单重态氧和超氧自由基的产生机理.最后,指出了现有研究的不足以及未来的发展方向.
  • 加载中
  • [1] 周贤太, 纪红兵, 裴丽霞, 等. 金属卟啉催化剂应用于均相氧化反应的研究进展[J].有机化学, 2007, 27(9):1039-1049.

    ZHOU X T, JI H B, PEI L X, et al. Progress in the application of metalloporphyrin catalysts for homogeneous oxidation reactions[J]. Organic Chemistry, 2007, 27(9):1039-1049(in Chinese).

    [2]
    [3] 刘强, 郭灿城. 金属卟啉仿生催化烃类C-H键氧化活化的基础研究和应用进展[J]. 中国科学:化学, 2012, 42(10):1399-1416.

    LIU Q, GUO C C. Basic research and application progress of metal porphyrin biomimetic catalytic activation of hydrocarbon C-H bond[J]. Chinese Science:Chemistry, 2012, 42(10):1399-1416(in Chinese).

    [4] 阳卫军, 郭灿城. 金属卟啉化合物及其对烷烃的仿生催化氧化[J]. 应用化学, 2004, 21(6):541-545.

    YANG W J, GUO C C. Metal porphyrin compounds and their biomimetic catalytic oxidation of alkanes[J]. Chinese Journal of Applied Chemistry, 2004, 21(6):541-545(in Chinese).

    [5] 刘惊宙, 马汪洋, 李珺, 等. 5,10,15,20-四(2-噻吩基)金属卟啉修饰TiO2光催化剂的制备及光催化性能[J]. 化学学报, 2011, 69(23):2821-2826.

    LIU J Z, MA W Y, LI W, et al. Preparation and photocatalytic activity of 5,10,15,20-tetrakis(2-thienyl) metalloporphyrin modified TiO2 photocatalysts[J]. Journal of Chemistry, 2011, 69(23):2821-2826(in Chinese).

    [6] 李凤娟, 宿辉, 李小龙, 等. 高级氧化技术在难降解工业废水处理中的应用研究进展[J]. 环保科技, 2017, 23(2):55-57

    ,64. LI F J, SU H, LI X L, et al. Progress in the application of advanced oxidation technology in the treatment of refractory industrial wastewater[J]. Environmental Technology, 2017, 23(2):55-57,64(in Chinese).

    [7] 尹怡维. 络合剂存在下类Fenton反应降解水中有机污染物研究[D]. 哈尔滨:哈尔滨工业大学, 2015. YIN Y W. Study on degradation of organic pollutants in water by Fenton reaction in the presence of complexing agents[D]. Harbin:Harbin Institute of Technology, 2015(in Chinese).
    [8] BOKARE A D, CHOI W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J]. Journal of Hazardous Materials, 2014, 275:121-135.
    [9] RUSH J D, KOPPENOL W H. Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. Reactions with organic molecules and ferrocytochromec[J]. Journal of Biological Chemistry, 1986, 261(15):6730-6733.
    [10] BREGJE V D W, BALK J M, HAENEN G R M M, et al. Elevated citrate levels in non-alcoholic fatty liver disease:The potential of citrate to promote radical production[J]. Febs Letters, 2013, 587(15):2461-2466.
    [11] HUANG W, BRIGANTE M, WU F, et al. Assessment of the Fe(Ⅲ)-EDDS complex in fenton-like processes:from the radical formation to the degradation of bisphenol A[J]. Environmental Science & Technology, 2013, 47(4):1952-1959.
    [12] SUBRAMANIAN G, MADRAS G. Introducing saccharic acid as an efficient iron chelate to enhance photo-Fenton degradation of organic contaminants[J]. Water Research, 2016, 104:168-177.
    [13] 秦雅鑫. Fe(Ⅲ)/H2O2类Fenton体系中铁循环调控及其降解除草剂甲草胺性能的研究[D]. 武汉:华中师范大学, 2016. QIN Y X. Study on iron cycle regulation and degradation of herbicide alachlor in Fe(Ⅲ)/H2O2 Fenton system[D]. Wuhan:Central China Normal University, 2016

    (in Chinese).

    [14] LENTE G, ESPENSON J H. Oxidation of 2,4,6-trichlorophenol by hydrogen peroxide. Comparison of different iron-based catalysts[J]. Green Chemistry, 2005, 7(1):28-34.
    [15] SERRA A C, DOCAL C, GONSALVES A. Efficient azo dye degradation by hydrogen peroxide oxidation with metalloporphyrins as catalysts[J]. Journal of Molecular Catalysis a-Chemical, 2005, 238(1-2):192-198.
    [16] FUKUSHIMA M, KAWASAKI M, SAWADA A, et al. Facilitation of pentachlorophenol degradation by the addition of ascorbic acid to aqueous mixtures of tetrakis(sulfonatophenyl)porphyrin and iron(Ⅱ)[J]. Journal of Molecular Catalysis a-Chemical, 2002, 187(2):201-213.
    [17] MURTINHO D, PINEIRO M, PEREIRA M M, et al. Novel porphyrins and a chlorin as efficient singlet oxygen photosensitizers for photooxidation of naphthols or phenols to quinones[J]. Journal of the Chemical Society. Perkin Transactions 2, 2000, (12):2441-2447.
    [18] SILVA E, PEREIRA M M, BURROWS H D, et al. Photooxidation of 4-chlorophenol sensitised by iron meso-tetrakis(2,6-dichloro-3-sulfophenyl)porphyrin in aqueous solution[J]. Photochemical and Photobiological Sciences, 2004, 3(2):200-204.
    [19] MONTEIRO C J P, PEREIRA M M, AZENHA M E, et al. A comparative study of water soluble 5,10,15,20-tetrakis(2,6-dichloro-3-sulfophenyl)porphyrin and its metal complexes as efficient sensitizers for photodegradation of phenols[J]. Photochemical and Photobiological Sciences, 2005, 4(8):617-624.
    [20] REBELO S L H, MELO A, COIMBRA R, et al. Photodegradation of atrazine and ametryn with visible light using water soluble porphyrins as sensitizers[J]. Environmental Chemistry Letters, 2007, 5(1):29-33.
    [21] KUDRIK E V, SOROKIN A B. Oxidation of aliphatic and aromatic C-H bonds by t -BuOOH catalyzed by μ-nitrido diiron phthalocyanine[J]. Journal of Molecular Catalysis A:Chemical, 2017, 426:499-505.
    [22] MARAIS E, KLEIN R, ANTUNES E, et al. Photocatalysis of 4-nitrophenol using zinc phthalocyanine complexes[J]. Journal of Molecular Catalysis A:Chemical, 2007, 261(1):36-42.
    [23] 王维. 金属卟啉催化氧化邻/对甲酚制邻/对羟基苯甲醛的研究[D]. 北京:北京工业大学, 2013. WANG W Q. Catalytic oxidation of o-p-cresol to o-/p-hydroxybenzaldehyde by metalloporphyrin[D]. Beijing:Beijing University of Technology, 2013(in Chinese).
    [24] 钮金芬, 姚秉华, 刘婷婷. 四羟基苯基金属卟啉(MTHPP)/TiO2的合成及其光催化活性的研究[J]. 分子催化, 2011, 25(5):435-441.

    NING J F, YAO B H, LIU T T. Synthesis and photocatalytic activity of tetrahydroxyphenyl metalloporphyrin (MTHPP)/TiO2[J].Molecular Catalysis, 2011, 25(5):435-441(in Chinese).

    [25] 冯泽, 颉雨佳, 郝芳, 等. 氧化锌负载四(4-硝基苯基)钴卟啉催化氧化环己烷性能[J]. 分子催化, 2016, 30(1):20-28.

    FENG Z, YAN Y J, HAO F, et al. Catalytic oxidation of cyclohexane with zinc oxide supported tetrakis(4-Nitrophenyl)cobalt porphyrin[J]. Molecular Catalysis, 2016, 30(1):20-28(in Chinese).

    [26] STEPHENSON N A, BELL A T. ChemInform abstract:Mechanistic insights into iron porphyrin catalyzed olefin epoxidation by hydrogen peroxide:Factors controlling activity and selectivity[J]. Cheminform, 2007, 275(1-2):54-62.
    [27] SERRA A C. A view on the mechanism of metalloporphyrin degradation in hydrogen peroxide epoxidation reactions[J]. Journal of Molecular Catalysis A:Chemical, 2004, 215(1):17-21.
    [28] GRIGOROPOULOU G, CLARK J H, ELINGS J A. Recent developments on the epoxidation of alkenes using hydrogen peroxide as an oxidant[J]. Green Chemistry, 2003, 5(1):1-7.
    [29] STEPHENSON N A, BELL A T. Mechanistic insights into iron porphyrin-catalyzed olefin epoxidation by hydrogen peroxide:Factors controlling activity and selectivity[J]. Journal of Molecular Catalysis A:Chemical, 2007, 275(1):54-62.
    [30] SILVA M, AZENHA M E, PEREIRA M M, et al. Immobilization of halogenated porphyrins and their copper complexes in MCM-41:Environmentally friendly photocatalysts for the degradation of pesticides[J]. Applied Catalysis B:Environmental, 2010, 100(1):1-9.
    [31] MELE G, DEL SOLE R, VASAPOLLO G, et al. TiO2-based photocatalysts impregnated with metallo-porphyrins employed for degradation of 4-nitrophenol in aqueous solutions:role of metal and macrocycle[J]. Research on Chemical Intermediates, 2007, 33(3):433-448.
    [32] GROVES J T, HAUSHALTER R C, NAKAMURA M, et al. High-valent iron-porphyrin complexes related to peroxidase and cytochrome P-450[J]. Journal of the American Chemical Society, 1981, 103(10):2884-2886.
    [33] SOROKIN A, SéRIS J L, MEUNIER B. Efficient oxidative dechlorination and aromatic ring cleavage of chlorinated phenols catalyzed by iron sulfophthalocyanine[J]. Science, 1995, 26(39):1163-1166.
    [34] SOROKIN A, DE SUZZONI-DEZARD S, POULLAIN D, et al. CO2 as the ultimate degradation product in the H2O2 oxidation of 2, 4, 6-trichlorophenol catalyzed by iron tetrasulfophthalocyanine[J]. Journal of the American Chemical Society, 1996, 118(31):7410-7411.
    [35] 卢燕, 谢斌, 黄春, 等. 水溶性金属卟啉催化过氧化氢氧化对苯二酚的动力学研究[J]. 分子催化, 2011, 25(6):534-540.

    LU Y, XIE B, HUANG C, et al. Kinetics of hydroquinone hydrogenation catalyzed by water-soluble metalloporphyrin[J]. Molecular Catalysis, 2011, 25(6):534-540(in Chinese).

    [36] CRESTINI C, SALADINO R, TAGLIATESTA P, et al. Biomimetic degradation of lignin and lignin model compounds by synthetic anionic and cationic water soluble manganese and iron porphyrins[J]. Bioorganic & Medicinal Chemistry, 1999, 7(9):1897-1905.
    [37] SOROKIN A, MEUNIER B. Efficient H2O2 oxidation of chlorinated phenols catalysed by supported iron phthalocyanines[J]. Journal of the Chemical Society Chemical Communications, 1994, 146(15):251-255.
    [38] COLOMBAN C, KUDRIK E V, AFANASIEV P, et al. Degradation of chlorinated phenols in water in the presence of H2O2 and water-soluble μ-nitrido diiron phthalocyanine[J]. Catalysis Today, 2014, 235:14-19.
    [39] 袁秋兰, 项小燕, 吴亮亮, 等四(对-磺酸基苯基)卟啉催化降解亚甲基蓝染料废水[J]. 化学工程与装备, 2011, (3):174-177. YUAN Q L, XIANG X Y, WU L L, et al. Catalytic degradation of methylene blue dye wastewater by tetrakis(p-sulfonylphenyl) porphyrin[J].Chemical Engineering and Equipment, 2011

    , (3):174-177(in Chinese).

    [40] SHEN C, SONG S, ZANG L, et al. Efficient removal of dyes in water using chitosan microsphere supported cobalt (Ⅱ) tetrasulfophthalocyanine with H2O2[J]. Journal of Hazardous Materials, 2010, 177(1):560-566.
    [41] 李继斌, 赵正亚, 李乃瑄. Meso-四-(4-磺基苯基)卟啉钴/过硫酸钠-过氧化氢催化氧化降解农药敌敌畏[J]. 应用化学, 2011, 28(9):1035-1040.

    LI J B, ZHAO Z Y, LI N Q. Catalytic oxidative degradation of pesticide dichlorvos by meso-tetra-(4-sulfophenyl) porphyrin cobalt/sodium persulfate-hydrogen peroxide[J]. Chinese Journal of Applied Chemistry, 2011, 28(9):1035-1040(in Chinese).

    [42] ALMARSSON O, BRUICE T C. A Homolytic mechanism of O-O bond scission prevails in the reactions of alkyl hydroperoxides with an octacationic tetraphenylporphinato-Iron(Ⅲ) complex in aqueous solution[J]. Journal of the American Chemical Society, 1995, 117(16):4533-4544.
    [43] BRUICE T C. Reactions of hydroperoxides with metallotetraphenylporphyrins in aqueous solutions[J]. Accounts of Chemical Research, 1991, 24(8):243-249.
    [44] BRUICE T C, BALASUBRAMANIAN P N, LEE R W, et al. ChemInform abstract:The mechanism of hydroperoxide O-O bond scission on reaction of hydroperoxides with iron(Ⅲ) Porphyrins[J]. Cheminform, 1989, 20(9):7890-7892.
    [45] HE G X, BRUICE T C. Nature of the epoxidizing species generated by reaction of alkyl hydroperoxides with iron(Ⅲ) porphyrins. Oxidations of cis-stilbene and (Z)-1,2-bis(trans-2, trans-3-diphenylcyclopropyl)ethene by tert-BuOOH in the presence of[meso-tetrakis(2,4,6-trimethy[J]. Journal of the American Chemical Society, 1991, 113(7):2747-2753.
    [46] LEE W A, BRUICE T C. Homolytic and heterolytic oxygen-oxygen bond scissions accompanying oxygen transfer to iron(Ⅲ) porphyrins by percarboxylic acids and hydroperoxides. A mechanistic criterion for peroxidase and cytochrome P-450[J]. Journal of the American Chemical Society, 1985, 107(2):513-514.
    [47] TRAYLOR T G, XU F. A biomimetic model for catalase:the mechanisms of reaction of hydrogen peroxide and hydroperoxides with iron (Ⅲ) porphyrins[J]. Journal of the American Chemical Society, 1987, 109(20):6201-6202.
    [48] TRAYLOR T G, CICCONE J P. Mechanism of reactions of hydrogen peroxide and hydroperoxides with iron (Ⅲ) porphyrins. Effects of hydroperoxide structure on kinetics[J]. Journal of the American Chemical Society, 1989, 111(22):8413-8420.
    [49] TRAYLOR T G, XU F. Mechanisms of reactions of iron (Ⅲ) porphyrins with hydrogen peroxide and hydroperoxides:Solvent and solvent isotope effects[J]. Journal of the American Chemical Society, 1990, 112(1):178-186.
    [50] TRAYLOR T G, TSUCHIYA S, BYUN Y S, et al. High-yield epoxidations with hydrogen peroxide and tert-butyl hydroperoxide catalyzed by iron (Ⅲ) porphyrins:Heterolytic cleavage of hydroperoxides[J]. Journal of the American Chemical Society, 1993, 115(7):2775-2781.
    [51] MEUNIER B, ROBERT A, PRATVIEL G. et al. Metalloporphyrins in catalytic oxidations and oxidative DNA cleavage. The Porphyrin Handbook, Volume 4. Biochemistry and Binding:Activation of Small Molecules[M]. Academic Press, San Diego, 2000:119-187
    [52] NAM W, CHOI H J, HAN H J, et al. Use of 2-methyl-1-phenylpropan-2-yl hydroperoxide (MPPH) as a mechanistic probe for the heterolytic versus homolytic O-O bond cleavage of tert-alkyl hydroperoxide by iron (Ⅲ) porphyrin complex[J]. Chemical Communications, 1999, (4):387-388.
    [53] FRANCESCOCIARDELLI, CARLOCARLINI, PAOLOPERTICI, et al. Polymer effect on catalysis by macromolecules/transition metal complexes[J]. Journal of Macromolecular Science:Part A-Chemistry, 2006, 26(2-3):327-347.
    [54] REN Q, HOU Z, WANG Y, et al. Noncovalent interactions of metalloporphyrins with polyamidoamine dendrimers give rise to efficient catalytic systems for H2O2 oxidation of trichlorophenol in water[J]. Chem Sus Chem, 2011, 4(8):1063-1067.
    [55] ZHU Z, CHEN Y, GU Y, et al. Catalytic degradation of recalcitrant pollutants by Fenton-like process using polyacrylonitrile-supported iron (Ⅱ) phthalocyanine nanofibers:Intermediates and pathway[J]. Water Research, 2016, 93:296-305.
    [56] LU W, CHEN W, LI N, et al. Oxidative removal of 4-nitrophenol using activated carbon fiber and hydrogen peroxide to enhance reactivity of metallophthalocyanine[J]. Applied Catalysis B:Environmental, 2009, 87(3):146-151.
    [57] LU W, LI N, CHEN W, et al. The role of multiwalled carbon nanotubes in enhancing the catalytic activity of cobalt tetraaminophthalocyanine for oxidation of conjugated dyes[J]. Carbon, 2009, 47(14):3337-3345.
    [58] SHEN C, WEN Y, SHEN Z, et al. Facile, green encapsulation of cobalt tetrasulfophthalocyanine monomers in mesoporous silicas for the degradative hydrogen peroxide oxidation of azo dyes[J]. Journal of Hazardous Materials, 2011, 193:209-215.
    [59] CHEN W, LU W, YAO Y, et al. Highly efficient decomposition of organic dyes by aqueous-fiber phase transfer and in situ catalytic oxidation using fiber-supported cobalt phthalocyanine[J]. Environmental Science & Technology, 2007, 41(17):6240-6245.
    [60] YAO Y, MAO Y, HUANG Q, et al. Enhanced decomposition of dyes by hemin-ACF with significant improvement in pH tolerance and stability[J]. Journal of Hazardous Materials, 2014, 264(4):323-331.
    [61] 毛亚军. 活性碳纤维负载金属卟啉降解有机污染物的研究[D]. 杭州:浙江理工大学, 2015. MAO Y J. Study on degradation of organic pollutants by activated carbon fiber loaded metalloporphyrin[D]. Hangzhou:Zhejiang University of Science and Technology, 2015(in Chinese).
    [62] 吕向菲, 李珺, 王晨, 等. 铜卟啉-TiO2复合光催化剂制备及降解4-NP的研究[J]. 高等学校化学学报, 2010, 31(7):1391-1397.

    LU X F, LI W, WANG C, et al. Preparation and degradation of 4-NP by copper porphyrin-TiO2 composite photocatalyst[J].Chemical Journal of Chinese Universities, 2010, 31(7):1391-1397(in Chinese).

    [63] 黄垒, 彭峰. 可见光光催化机理研究进展[J]. 工业催化, 2007, 15(3):5-11.

    HUANG L, PENG F. Research Progress in Visible Light Photocatalysis Mechanism[J]. Industrial Catalysis, 2007, 15(3):5-11(in Chinese).

    [64] GUO Z, CHEN B, ZHANG M, et al. Zinc phthalocyanine hierarchical nanostructure with hollow interior space:Solvent-thermal synthesis and high visible photocatalytic property[J]. Journal of Colloid and Interface Science, 2010, 348(1):37-42.
    [65] LUO L, XIAO Z, CHEN B, et al. Natural porphyrins accelerating the phototransformation of benzo[a] pyrene in water[J]. Environmental Science & Technology, 2018, 52(6):3634-3641.
    [66] KIM W, PARK J, JO H J, et al. Visible light photocatalysts based on homogeneous and heterogenized tin porphyrins[J]. The Journal of Physical Chemistry C, 2008, 112(2):491-499.
    [67] TAI C, JIANG G, LIU J, et al. Rapid degradation of bisphenol A using air as the oxidant catalyzed by polynuclear phthalocyanine complexes under visible light irradiation[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2005, 172(3):275-282.
    [68] ZHANG M, SHAO C, GUO Z, et al. Highly efficient decomposition of organic dye by aqueous-solid phase transfer and in situ photocatalysis using hierarchical copper phthalocyanine hollow spheres[J]. ACS Applied Materials & Interfaces, 2011, 3(7):2573-2578.
    [69] GRANADOS-OLIVEROS G, PáEZ-MOZO E A, ORTEGA F M, et al. Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation[J]. Applied Catalysis B:Environmental, 2009, 89(3-4):448-454.
    [70] 吴景悦, 李乃瑄. 改性天然血红素制备仿酶催化剂及其光催化降解对苯二酚[J]. 环境化学, 2013, 32(11):2142-2148.

    WU J Y, LI N Q. Preparation of imitation enzyme catalyst by modified natural heme and its photocatalytic degradation of hydroquinone[J]. Environmental Chemistry, 2013, 32(11):2142-2148(in Chinese).

    [71] ZHAN B Z, LI X Y. A novel ‘build-bottle-around-ship’ method to encapsulate metalloporphyrins in zeolite-Y. An efficient biomimetic catalyst[J]. Chemical Communications, 1998, 3(3):349-350.
    [72] JR K J B, GABRIELOV A G, BELL S L, et al. Zeolite encapsulated cobalt(Ⅱ) and copper(Ⅱ) perfluorophthalocyanines. Synthesis and characterization[J]. Inorganic Chemistry, 1994, 33(1):67-72.
    [73] BARLOY L, BATTIONI P, MANSUY D. Manganese porphyrins supported on montmorillonite as hydrocarbon mono-oxygenation catalysts:Particular efficacy for linear alkane hydroxylation[J]. Journal of the Chemical Society Chemical Communications, 1990, 19(19):1365-1367.
    [74] LIU C J, LI S G, PANG W Q, et al. Ruthenium porphyrin encapsulated in modified mesoporous molecularsieve MCM-41 for alkene oxidation[J]. Chemical Communications, 1997, 1(1):65-66.
    [75] COOKE P R, SMITH J R L. Alkene epoxidation catalysed by iron(Ⅲ) and manganese(Ⅲ) tetraarylporphyrins coordinatively bound to polymer and silica supports[J]. Journal of the Chemical Society Perkin Transactions, 1994, 1(14):1913-1923.
    [76] BATTIONI P, CARDIN E, LOULOUDI M, et al. ChemInform abstract:Metalloporphyrinosilicas:A new class of hybrid organic-inorganic materials acting as selective biomimetic oxidation catalysts[J]. Cheminform, 1996, 28(1):2037-2038.
    [77] 邱文革, 白广梅, 孟声. 非均相金属卟啉催化剂的研究进展[J]. 化学研究与应用, 2006, 18(8):889-895.

    QIU W G, BAI G M, MENG S. Research progress of heterogeneous metal porphyrin catalysts[J]. Chemical Research and Application, 2006, 18(8):889-895(in Chinese).

    [78] YU X Q, HUANG J S, YU W Y, et al. Polymer-supported ruthenium porphyrins:Versatile and robust epoxidation catalysts with unusual selectivity[J]. Journal of the American Chemical Society, 2000, 122(22):5337-5342.
    [79] NEYSP E F, VANKELECOM I F, L'ABBÉ M, et al. Manganese-and iron-porphyrins embedded in a polydimethylsiloxane membrane:A selective oxidation catalyst[J]. Journal of molecular catalysis, A. Chemical, 1998, 134(1-3):209-214.
    [80] WU L, LI A, GAO G, et al. Efficient photodegradation of 2,4-dichlorophenol in aqueous solution catalyzed by polydivinylbenzene-supported zinc phthalocyanine[J]. Journal of Molecular Catalysis A:Chemical, 2007, 269(1):183-189.
    [81] ALVARO M, CARBONELL E, ESPLá M, et al. Iron phthalocyanine supported on silica or encapsulated inside zeolite Y as solid photocatalysts for the degradation of phenols and sulfur heterocycles[J]. Applied Catalysis B:Environmental, 2005, 57(1):37-42.
    [82] CHEN X, ZOU J, LIU L, et al. Preparation of magnetic silica nanoparticle-supported iron tetra-carboxyl phthalocyanine catalyst and its photocatalytic properties[J]. Applied Spectroscopy, 2010, 64(5):552-557.
    [83] CABIR B, YURDERI M, CANER N, et al. Methylene blue photocatalytic degradation under visible light irradiation on copper phthalocyanine-sensitized TiO2 nanopowders[J]. Materials Science and Engineering:B, 2017, 224:9-17.
    [84] GORDUK S, AVCIATA O, AVCIATA U. Photocatalytic degradation of methylene blue under visible light irradiation by non-peripherally tetra substituted phthalocyanine-TiO2 nanocomposites[J]. Inorganica Chimica Acta, 2018, 471:137-147.
    [85] ALBAY C, KOÇ M, ALTIN, et al. New dye sensitized photocatalysts:Copper(Ⅱ)-phthalocyanine/TiO2 nanocomposite for water remediation[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2016, 324:117-125.
    [86] MOSINGER J, LANG K, KUBáT P, et al. Photofunctional polyurethane nanofabrics doped by zinc tetraphenylporphyrin and zinc phthalocyanine photosensitizers[J]. Journal of Fluorescence, 2009, 19(4):705-713.
    [87] SHIRAGAMI T, MATSUMOTO J, INOUE H, et al. Antimony porphyrin complexes as visible-light driven photocatalyst[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2005, 6(4):227-248.
    [88] GMUREK M, MOSINGER J, MILLER J S. 2-Chlorophenol photooxidation using immobilized meso-tetraphenylporphyrin in polyurethane nanofabrics[J]. Photochemical & Photobiological Sciences Official Journal of the European Photochemistry Association & the European Society for Photobiology, 2012, 11(9):1422-1427.
    [89] SILVA M, CALVETE M J F, GONçALVES N P F, et al. Zinc(Ⅱ) phthalocyanines immobilized in mesoporous silica Al-MCM-41 and their applications in photocatalytic degradation of pesticides[J]. Journal of Hazardous Materials, 2012, 233-234:79-88.
    [90] PRIYANKA K P, SANKARARAMAN S, BALAKRISHNA K M, et al. Enhanced visible light photocatalysis using TiO2/phthalocyanine nanocomposites for the degradation of selected industrial dyes[J]. Journal of Alloys and Compounds, 2017, 720:541-549.
    [91] XIONG Z, XU Y. Immobilization of palladium phthalocyaninesulfonate onto anionic clay for sorption and oxidation of 2,4,6-trichlorophenol under visible light irradiation[J]. Chemistry of Materials, 2007, 19(6):1452-1458.
    [92] MAHMIANI Y, SEVIM A M, GüL A. Photocatalytic degradation of 4-chlorophenol under visible light by using TiO2 catalysts impregnated with Co(Ⅱ) and Zn(Ⅱ) phthalocyanine derivatives[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2016, 321:24-32.
    [93] GUO Z, CHEN B, MU J, et al. Iron phthalocyanine/TiO2 nanofiber heterostructures with enhanced visible photocatalytic activity assisted with H2O2[J]. Journal of Hazardous Materials, 2012, 219-220:156-163.
    [94] MAYA-TREVIñO M L, GUZMáN-MAR J L, HINOJOSA-REYES L, et al. Synthesis and photocatalytic activity of ZnO-CuPc for methylene blue and potassium cyanide degradation[J]. Materials Science in Semiconductor Processing, 2018, 77:74-82.
    [95] SUN W J, LI J, MELE G, et al. Enhanced photocatalytic degradation of rhodamine B by surface modification of ZnO with copper (Ⅱ) porphyrin under both UV-vis and visible light irradiation[J]. Journal of Molecular Catalysis A:Chemical, 2013, 366:84-91.
    [96] AFZAL S, DAOUD W A, LANGFORD S J. Photostable self-cleaning cotton by a copper(Ⅱ) porphyrin/TiO2 visible-light photocatalytic system[J]. ACS Applied Materials & Interfaces, 2013, 5(11):4753-4759.
    [97] 操兰, 杨昌军, 邓克俭, 等. 氮掺杂石墨烯/四氧化三铁复合物负载含硫氮杂钴卟啉光催化降解有机污染物[J]. 化学与生物工程, 2018,35(5):16-19

    ,25. CAO L, YANG C J, DENG K J, et al. Nitrogen-doped graphene/ferric oxide complex loaded with sulfur-containing aza-cobalt porphyrin photocatalytic degradation of organic pollutants[J].Chemistry and Bioengineering, 2018, 35(5):16-19,25(in Chinese).

    [98] 刘欣阳, 张晓楠, 李乃瑄. 磁微球负载硝基锌卟啉光催化剂的制备及催化性能研究[J]. 环境科学学报, 2015, 35(10):3157-3162.

    LIU X Y, ZHANG X N, LI N X. Preparation and catalytic performance of magnetic microsphere-supported nitrozinc porphyrin photocatalyst[J]. Chinese Journal of Environmental Science, 2015, 35(10):3157-3162(in Chinese).

    [99] CAI J H, HUANG J W, YU H C, et al. Synthesis, characterization, and photocatalytic activity of TiO2 microspheres functionalized with porphyrin[J]. International Journal of Photoenergy, 2012, 2012:1-10.
    [100] AHMED M, ABOU-GAMRA Z, MEDIEN H, et al. Effect of porphyrin on photocatalytic activity of TiO2 nanoparticles toward Rhodamine B photodegradation[J]. Journal of Photochemistry and Photobiology B:Biology, 2017, 176:25-35.
    [101] LIU X, YU M, ZHANG Z, et al. Solvothermal preparation of copper(Ⅱ) porphyrin-sensitized mesoporous TiO2 composites:enhanced photocatalytic activity and stability in degradation of 4-nitrophenol[J]. Research on Chemical Intermediates, 2016, 42(6):5197-5208.
  • 加载中
计量
  • 文章访问数:  1965
  • HTML全文浏览数:  1965
  • PDF下载数:  85
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-11-13
赵晓娜, 张鹏, 赵义斐, 张文豪, 孟令鲲, 侯慧杰, 刘冰川, 杨家宽, 胡敬平. 金属卟啉衍生物催化降解污染物研究进展[J]. 环境化学, 2019, (9): 2067-2080. doi: 10.7524/j.issn.0254-6108.2018111307
引用本文: 赵晓娜, 张鹏, 赵义斐, 张文豪, 孟令鲲, 侯慧杰, 刘冰川, 杨家宽, 胡敬平. 金属卟啉衍生物催化降解污染物研究进展[J]. 环境化学, 2019, (9): 2067-2080. doi: 10.7524/j.issn.0254-6108.2018111307
ZHAO Xiaona, ZHANG Peng, ZHAO Yifei, ZHANG Wenhao, MENG Lingkun, HOU Huijie, LIU Bingchuan, YANG Jiakuan, HU Jingping. The degradation of pollutants catalyzed by metalloporphyrin derivatives[J]. Environmental Chemistry, 2019, (9): 2067-2080. doi: 10.7524/j.issn.0254-6108.2018111307
Citation: ZHAO Xiaona, ZHANG Peng, ZHAO Yifei, ZHANG Wenhao, MENG Lingkun, HOU Huijie, LIU Bingchuan, YANG Jiakuan, HU Jingping. The degradation of pollutants catalyzed by metalloporphyrin derivatives[J]. Environmental Chemistry, 2019, (9): 2067-2080. doi: 10.7524/j.issn.0254-6108.2018111307

金属卟啉衍生物催化降解污染物研究进展

    通讯作者: 胡敬平, E-mail: hujp@hust.edu.cn
  • 1. 华中科技大学环境科学与工程学院, 武汉, 430074;
  • 2. 固废处理处置与资源化技术湖北省工程实验室, 武汉, 430074
基金项目:

科技部国家重点研发计划(2018YFC1900105),国家级大学生创新创业训练计划和中央高校基本科研业务费专项资金(2017KFYXJJ217)资助.

摘要: 由于工业化和城市化的快速发展而带来的环境问题已经引起了人们的广泛关注.土壤和地下水中不断排放的持久性污染物,对人们的健康造成了极大的威胁,因此需要更加有效的策略来解决.卟啉类物质由于具有特殊的氧化还原性质和光敏性,已经被广泛用于有机污染物的去除.本文总结了金属卟啉的最新研究进展,对其在类芬顿和光催化领域的应用进行了详细的介绍,并且讨论了高价铁氧卟啉物种,单重态氧和超氧自由基的产生机理.最后,指出了现有研究的不足以及未来的发展方向.

English Abstract

参考文献 (101)

返回顶部

目录

/

返回文章
返回