黄河三角洲油田区土壤重金属的垂直分布规律及其影响因素
Vertical distribution and influencing factors of heavy metals in oilfield soil in the Yellow River Delta
-
摘要: 在黄河三角洲地区,由于胜利油田油气长期开采造成了采油区土壤环境质量的不断恶化.通过对胜利油田石油污染区土壤进行采样和分析,重点研究石油污染影响下10种重金属元素(Pb、V、Cr、Mn、Fe、Co、Ni、Cu、Zn和Cd)的含量、土壤粒径和总有机碳比重(TOC)分布规律.结果表明,19个土壤剖面的土壤颗粒d0.5的范围为18—44 μm,大部分属于细砂粒;但油田污染区土壤剖面重金属的垂直分布相较于对照组非污染区,二者存在明显差异:受石油烃及其降解产物的影响,油田区8种主要重金属(Pb、V、Mn、Fe、Co、Cu、Zn和Cd)在0—10 cm或10—20 cm层重金属含量最高,最大值分别为32.51、88.04、336.9、2.530×104、9.76、23.46、87.15、0.38 mg·kg-1;对照组受成土过程的影响,重金属在土壤深层(30—50 cm)出现两种不同的变化规律.通过聚类和相关性分析,油田区8种主要重金属(Pb、V、Mn、Fe、Co、Cu、Zn和Cd)浅层受泄漏石油影响为主,深层受土壤本底值影响为主,含量与土壤TOC(除去表层)的相关性较高;Cr、Ni则是受成土过程的影响.而非油区中8种重金属受大气沉降和成土过程的共同影响,含量与黏、粉粒之间普遍存在负相关关系,与TOC没有明显的相关性.分析结果表明,油区土壤中重金属的含量、迁移及其分布都受到了石油污染和油田开发的影响.该研究将对黄河三角洲湿地重金属-石油烃复合污染物污染的预防和治理提供一定的科学理论依据.Abstract: In the Yellow River Delta region, long-term exploitation of oil and gas in Shengli Oilfield has caused the deterioration of soil environmental quality in the oil production areas. Soil samples were collected from the oil-contaminated area of Shengli Oilfield. The distribution of 10 heavy metal elements (Pb, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Cd), soil particle size and total organic carbon (TOC)specific gravity under the influence of petroleum pollution were studied.The results showed that the soil particles d0.5 of 19 soil profiles ranged from 18 to 44 μm, most of which belonged to fine sand. The vertical distribution of heavy metals in the soil profiles of the oilfield contaminated area was significantly different from that of the non-polluted area. Affected by petroleum hydrocarbons and their degradation products, the eight major heavy metal (Pb, V, Mn, Fe, Co, Cu, Zn and Cd) in the 0-10 cm or 10-20 cm layers of the oilfield has the highest. The maximum values are 32.51, 88.04, 336.9, 2.530×104, 9.76, 23.46, 87.15 and 0.38 mg·kg-1, respectively. The control group was influenced by the process of soil formation, and there were two different changes of heavy metals in the deep layers of soil (30-50 cm). In addition, through cluster and correlation analysis, in the oilfield, the eight major heavy metals (Pb, V, Mn, Fe, Co, Cu, Zn and Cd) were mainly impacted by the leakage of petroleum in the shallow layers, but the deep layers were mainly affected by the soil background value. The correlation between heavy metal contents and TOC (removed the surface layer) is high. Cr and Ni were affected by the soil formation process. The eight heavy metals in the non-oil area were affected by the atmospheric deposition and soil formation. There is a general negative correlation between heavy metal content and clay, silt particles, but there is no obvious correlation between the content of heavy metals and TOC. Overall, the results show that the content, movement and distribution of heavy metals in the oilfield soil are influenced by oil pollution and oilfield development. This study will provide a scientific and theoretical basis for the prevention and control of heavy metals-petroleum hydrocarbon composite pollution in the Yellow River Delta wetland.
-
Key words:
- soil particle size /
- heavy metals /
- TOC /
- petroleum pollution /
- vertical distribution
-
[1] 由佳, 张怀清, 陈永富. 黄河三角洲国家级自然保护区湿地资源评估[J]. 湿地科学与管理, 2017, 13(1):9-13. YOU J, ZHANG H Q, CHEN Y F. Wetland resources assessment of the Yellow River Delta national nature reserve[J]. Wetland Science and Management, 2017, 13(1):9-13(in Chinese).
[2] 刘志杰, 李培英, 张晓龙, 等.黄河三角洲滨海湿地表层沉积物重金属区域分布及生态风险评价[J]. 环境科学, 2012, 33(4):1182-1188. LIU Z J, LI P Y, ZHANG X L, et al. Distribution and ecological risk assessment of heavy metals in surface sediments of coastal wetlands in the Yellow River Delta[J]. Environmental Science, 2012, 33(4):1182-1188(in Chinese).
[3] 李峰, 谢永宏, 陈心胜, 等.黄河三角洲湿地水生植物组成及生态位[J]. 生态学报, 2009, 29(11):6257-6265. LI F, XIE Y H, CHEN X S, et al. Composition and niche of aquatic plants in the Yellow River Delta wetland[J]. Journal of Ecology, 2009, 29(11):6257-6265(in Chinese).
[4] 赵明明, 王传远, 孙志高, 等. 黄河尾闾及近岸沉积物中重金属的含量分布及生态风险评价[J]. 海洋科学, 2016, 40(1):68-75. ZHAO M M, WANG C Y, SUN Z G, et al. Content distribution and ecological risk assessment of heavy metals in the sediments of the Yellow River and its nearshore sediments[J]. Marine Science, 2016, 40(1):68-75(in Chinese).
[5] NOROUZIRAD R, GONZALEZ-MONTANA J R, MARTINE-PASTOR F, et al. Lead and cadmium levels in raw bovine milk and dietary risk assessment in areas near petroleum extraction industries[J]. Science of Total Environment, 2018,635:308-314. [6] OSUJI L C, ONOJAKE C M. Field reconnaissance and estimation of petroleum hydrocarbon and heavy metal contents of soils affected by the Ebocha-8 oil spillage in Niger Delta, Nigeria[J]. Journal of Environmental Management, 2005, 79(2):133-139. [7] FU X W, WANG D G, REN X H, et al. Spatial distribution patterns and potential sources of heavy metals in soils of a crude oil-polluted region in China[J]. Pedosphere, 2014, 24(4):508-515. [8] NIE M, XIAN N X, FU X H, et al. The interactive effects of petroleum-hydrocarbon spillage and plant rhizosphere on concentrations and distribution of heavy metals in sediments in the Yellow River Delta, China[J]. Journal of Hazardous Materials, 2009, 174(1-3):156-161. [9] 傅晓文, 陈贯虹, 迟建国, 等. 胜利油田土壤中重金属的污染特征分析[J]. 山东科学, 2015, 28(1):88-96. FU X W, CHEN G H, CHI J G, et al. Analysis of pollution characteristics of heavy metals in soil of Shengli oilfield[J]. Shandong Science, 2015, 28(1):88-96(in Chinese).
[10] ALSHAHRI F, EL-TAHER A. Assessment of heavy and trace metals in surface soil nearby an oil refinery, Saudi Arabia, using geoaccumulation and pollution indices[J]. Archives of Environmental Contamination and Toxicology, 2018, 75(3):390-401. [11] KHUDUR L S, GLEESON D B, RYAN M H, et al. Implications of co-contamination with aged heavy metals and total petroleum hydrocarbons on natural attenuation and ecotoxicity in Australian soils[J]. Environmental Pollution, 2018, 40:94-102. [12] 李颖, 樊萍, 赵春梅, 等. 原油在土壤中迁移及降解的研究[J]. 油气田环境保护, 1997(3):33-36. LI Y, FAN P, ZHAO C M, et al. Study on migration and degradation of crude oil in soil[J]. Oil and Gas Field Environmental Protection, 1997 (3):33-36(in Chinese).
[13] 吕双燕. 黄河三角洲滨海湿地石油烃和重金属空间分布规律与潜在生态风险研究[D]. 烟台:鲁东大学, 2017. LV S Y. Spatial distribution and potential ecological risk of petroleum hydrocarbons and heavy metals in coastal wetlands of the Yellow River Delta[D]. Yantai:Ludong University, 2017(in Chinese). [14] 李景喜, 陈发荣, 崔维刚, 等. 不同原油中金属元素的测定及聚类分析[J]. 分析测试学报, 2010, 29(6):558-563. LI X J, CHEN F R, CUI W G, et al. Determination and cluster analysis of metal elements in different crude oils[J]. Journal of Analytical Testing, 2010, 29(6):558-563(in Chinese).
[15] 金大伟. 原油中微量金属元素检测新技术(ICP-AES法)及应用[J].西部探矿工程, 2016, 28(2):57-59 ,63. JIN D W. New technology for detection of trace metal elements in crude oil (ICP-AES method) and its application[J]. Western Exploration Project, 2016, 28(2):57-59,63(in Chinese).
[16] 国家环境保护局. 中国土壤元素背景值[M]. 北京:中国环境科学出版社, 1990. National Environmental Protection Agency. Background values of soil elements in China[M]. Beijing:China Environmental Science Press, 1990(in Chinese). [17] 贾建丽, 刘莹, 李广贺, 等. 油田区土壤石油污染特性及理化性质关系[J]. 化工学报, 2009, 60(3):726-732. JIA J L, LIU Y, LI H G, et al. Relationship between soil oil pollution characteristics and physical and chemical properties in oilfield area[J]. Journal of Chemical Industry and Engineering, 2009, 60(3):726-732(in Chinese).
[18] 孙会梅. 石油污染物质输入对滨海湿地根际微生物群落结构的影响研究[D]. 青岛:中国海洋大学, 2013. SUN H M. Effects of petroleum pollutants input on rhizosphere microbial community structure in coastal wetlands[D]. Qingdao:Ocean University of China, 2013(in Chinese). [19] LUO L, MA Y B, ZHANG S Z, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90(8):2524-2530. [20] 吕建树, 何华春. 江苏海岸带土壤重金属来源解析及空间分布[J].环境科学, 2018, 39(6):2853-2864. LV J S, HE C H. Source analysis and spatial distribution of heavy metals in soils of Jiangsu coastal zone[J]. Environmental Science, 2018, 39(6):2853-2864(in Chinese).
[21] 徐京萍, 张柏, 王宗明, 等. 九台市不同利用方式下土壤铬含量及其空间分布特征[J]. 水土保持学报, 2006(3):36-39. XU J P, ZHANG H, WANG Z M, et al. Soil chromium content and its spatial distribution characteristics under different utilization patterns in Jiutai City[J]. Journal of Soil and Water Conservation, 2006 (3):36-39(in Chinese).
[22] LV J S, LIU Y, ZHANG Z L, et al. Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils[J]. Journal of Hazardous Materials, 2013, 261:387-397. [23] 王润珑, 徐应明, 王农, 等. 天津污灌区菜地土壤团聚体中有机碳和重金属含量特征[J]. 环境科学学报, 2018, 38(11):4490-4496. WANG R L, XU Y M, WANG N, et al. Characteristics of organic carbon and heavy metals in soil aggregates from vegetable fields in Tianjin sewage irrigation area[J]. Journal of Environmental Science, 2018, 38(11):4490-4496(in Chinese).
[24] 龚仓, 马玲玲, 成杭新, 等. 典型农耕区黑土和沼泽土团聚体颗粒中重金属的分布特征解析[J]. 生态环境学报, 2012, 21(9):1635-1639. GONG C, MA L L, CHENG H X, et al. Analysis of distribution characteristics of heavy metals in aggregates of black soil and marsh soil in typical farming areas[J]. Journal of Eco-Environment, 2012, 21(9):1635-1639(in Chinese).
[25] ZHU Y, ZOU X D, FENG S P, et al. The effect of grain size on the Cu, Pb, Ni, Cd speciation and distribution in sediments:A case study of Dongping Lake, China[J]. Enviromental Geology, 2006, 50(5):753-759. [26] SINGH A K, HASNAIN S I, BANERJEE D K. Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River-a tributary of the lower Ganga, India[J]. Enviromental Geology, 1999, 39(1):90-98. [27] [28] 张晓阳, 李凯荣, 张麟君. 陕北石油污染对土壤理化性质的影响[J]. 水土保持研究, 2013, 20(3):32-38. ZHANG X Y, LI G R, ZHANG L J. Effect of petroleum contamination on physical and chemical properties of soils in oilfield of northern Shanxi[J]. Soil and Water Conservation Research, 2013, 20(3):32-38(in Chinese).
计量
- 文章访问数: 1998
- HTML全文浏览数: 1998
- PDF下载数: 74
- 施引文献: 0