广东江门地热水水文地球化学特征及来源分析

林韵, 高磊, 李绍恒, 王卓微, 叶志平, 陈建耀, 杨志刚. 广东江门地热水水文地球化学特征及来源分析[J]. 环境化学, 2020, (2): 512-523. doi: 10.7524/j.issn.0254-6108.2019030606
引用本文: 林韵, 高磊, 李绍恒, 王卓微, 叶志平, 陈建耀, 杨志刚. 广东江门地热水水文地球化学特征及来源分析[J]. 环境化学, 2020, (2): 512-523. doi: 10.7524/j.issn.0254-6108.2019030606
LIN Yun, GAO Lei, LI Shaoheng, WANG Zhuowei, YE Zhiping, CHEN Jianyao, YANG Zhigang. Hydrogeochemical characteristics and source identification of geothermal waters in Jiangmen, Guangdong Province[J]. Environmental Chemistry, 2020, (2): 512-523. doi: 10.7524/j.issn.0254-6108.2019030606
Citation: LIN Yun, GAO Lei, LI Shaoheng, WANG Zhuowei, YE Zhiping, CHEN Jianyao, YANG Zhigang. Hydrogeochemical characteristics and source identification of geothermal waters in Jiangmen, Guangdong Province[J]. Environmental Chemistry, 2020, (2): 512-523. doi: 10.7524/j.issn.0254-6108.2019030606

广东江门地热水水文地球化学特征及来源分析

    通讯作者: 陈建耀, E-mail: chenjyao@mail.sysu.edu.cn
  • 基金项目:

    国家自然科学基金(41771027,41701585,41611140112,41961144027),广东省自然科学基金(2017A030310309),亚太全球变化研究组织APN项目(CRRP2019-09MY-Onodera),中央高校基本业务费(17lgpy40)和广东省水利科技创新项目(2018年度)资助.

Hydrogeochemical characteristics and source identification of geothermal waters in Jiangmen, Guangdong Province

    Corresponding author: CHEN Jianyao, chenjyao@mail.sysu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (41771027, 41701585, 41611140112, 41961144027), Natural Science Foundation of Guangdong Province (2017A0310309), Asia-Pacific Network for Global Change Research(CRRP2019-09MY-Onodera), Fundamental Business Fees of Central Universities (17lgpy40) and Water Science and Technology Innovation Project of Guangdong Province (2018).
  • 摘要: 粤西沿海地带地热资源丰富,探索其水文地球化学的特征有利于地热资源的保护和合理开发利用.本文以广东省江门地区为例,对该研究区地热水的水化学和稳定同位素(δD、δ18O)特征进行分析,并探讨该地热系统的水循环过程,包括补给源、补给高程、热储温度、循环深度等.结果表明,区域内热水温度为39.2-80℃,pH值为7.31-10.04,属于中低温偏碱性水;距海岸线从远到近将热水分成A、B、C组(A组约65 km,B组约30 km,C组约5 km),其TDS平均值(A组149.06 mg·L-1,B组765.78 mg·L-1,C组4322.23 mg·L-1)随着与海岸带距离的增加呈下降趋势,水化学类型从HCO3-Na型变为Cl-Na型;据Schoeller图、γNa/γ(Na+Cl)和Br/Cl比值推测,地热水上升过程可能受地表水、浅层地下水或者海水的混合作用;稳定同位素数据表明,地热水补给来源是大气降水,补给区为出露区附近的244-698 m的丘陵或山地,无明显的"氧漂移"现象,热储温度在83-197℃左右,循环深度约1.6-4.6 km,属于深循环对流型中低温地热系统,符合广东大部分已探明地热田的一般特征.
  • 加载中
  • [1] 陈墨香. 中国地热资源的分布及其开发利用[J]. 资源科学, 1991(5):40-46,58.

    CHEN M X. Distribution and utilization of geothermal resources in China[J]. Resources Science, 1991, 5:40-46,58(in Chinese).

    [2] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32):25-31.

    WANG J Y, HU S B, PANG Z H, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J].Science and Technology Review, 2012, 30(32):25-31(in Chinese).

    [3] 庞忠和, 胡圣标, 汪集旸. 中国地热能发展路线图[J]. 科技导报, 2012, 30(32):3-10.

    PANG Z H, HU S B, WANG J Y. A roadmap to geothermal energy development in China[J].Science and Technology Review, 2012, 30(32):3-10(in Chinese).

    [4] 陈墨香, 邓孝. 中国地下热水分布之特点及属性[J]. 第四纪研究, 1996, 16(2):131-138.

    CHEN M X, DENG X. The distributive characteristics of geothermal water and its nature in China[J]. Quaternary Sciences, 1996, 16(2):131-138(in Chinese).

    [5] 王东升, 王经兰. 中国地下热水的基本类型和成因特征[J]. 第四纪研究, 1996, 16(2):139-146.

    WANG D S, WANG J L. Genetic characteristics and basic types of geothermal water in China[J].Quaternary Sciences, 1996, 16(2):139-146(in Chinese).

    [6]
    [7] AVAR Ö, KURTULU B, GüRSU S, et al. Geochemical and isotopic characteristics of structurally controlled geothermal and mineral waters of Muğla (SW Turkey)[J]. Geothermics, 2016, 64:466-481.
    [8] MAO X, WANG Y, ZHAN H, et al. Geochemical and isotopic characteristics of geothermal springs hosted by deep-seated faults in Dongguan Basin, Southern China[J]. Journal of Geochemical Exploration, 2015, 158:112-121.
    [9] CAPACCIONI B, VASELLI O, TASSI F, et al. Hydrogeochemistry of the thermal waters from the Sciacca Geothermal Field (Sicily, southern Italy)[J]. Journal of Hydrology, 2011, 396(3-4):292-301.
    [10] AWALEH M O, HOCH F B, KADIEH I H, et al. The geothermal resources of the Republic of Djibouti-I:Hydrogeochemistry of the Obock coastal hot springs[J]. Journal of Geochemical Exploration, 2015, 152:54-66.
    [11] YUAN J F, MAO X M, WANG Y X. Hydrogeochemical characteristics of low to medium temperature groundwater in the Pearl River Delta region, China[J]. Procedia Earth and Planetary Science, 2013, 7:928-931.
    [12] WANG X, LU G P, HU B X. Hydrogeochemical characteristics and geothermometry applications of thermal waters in coastal Xinzhou and Shenzao geothermal fields, Guangdong, China[J/OL]. Geofluids, 2018. https://doi.org/10.1155/2018/8715080
    [13] 袁建飞. 广东沿海地热系统水文地球化学研究[D]. 武汉:中国地质大学, 2013. YUAN J F. Hydrogeochemistry of the geothermal systems in coastal areas of Guangdong Province,South China[D]. Wuhan:China University of Geosciences, 2013(in Chinese).
    [14] CHEN L, MA T, DU Y, et al. Hydrochemical and isotopic (2H, 18O and 37Cl) constraints on evolution of geothermal water in coastal plain of Southwestern Guangdong Province, China[J]. Journal of Volcanology and Geothermal Research, 2016, 318:45-54.
    [15] 汪啸. 广东沿海典型深大断裂带地热水系统形成条件及水文地球化学特征[D]. 武汉:中国地质大学,2018. WANG X. Formation conditions and hydrogeochemical characteristics of the geothermal water in typical coastal geothermal field with deep faults, Guangdong Province[D]. Wuhan:China University of Geosciences,2018(in Chinese).
    [16] 江门市水利志编纂委员会. 江门市水利志(精)[M].北京:中国水利水电出版社, 2008. Compilation Committee of Jiangmen water annals. Jiangmen water annals[M].Beijing:China Water and Power Press, 2008(in Chinese).
    [17] 李学礼, 孙占学, 刘金辉. 水文地球化学.第3版[M]. 北京:原子能出版社, 2010. LI X L,SUN Z X,LIU J H. Hydrogeochemical (The third edition)[M]. Beijing:Atomic Energy Press, 2010(in Chinese).
    [18] 刘尚仁. 广东新会市的地质地貌与地下水[J]. 中山大学学报论丛, 1993(2):84-94. LIU S R. Geology, landform and groundwater in Xinhui City, Guangdong[J]. Supplement to the Journal of Sun Yat-Sen University, 1993

    (2):84-94(in Chinese).

    [19] 周海燕, 周训, 柳春晖, 等. 广东省从化温泉热矿水水化学与同位素特征[J]. 自然资源学报, 2008, 23(4):705-712.

    ZHOU H Y, ZHOU X, LIU C H, et al. Hydro-chemical and isotopic characteristics of Conghua hot mineral springs in Guangdong[J].Journal of Natural Resources, 2008, 23(4):705-712(in Chinese).

    [20] 宋保平, 张先林, 方正, 等. 长江河口地区第四系地下水化学演化机制[J]. 地理学报, 2000, 55(2):209-218.

    SONG B P, ZHANG X L, FANG Z, et al. Mechanism of chemical evolution for Quaternary groundwater in Yangtze River estuarine region[J]. Acta Geographica Sinica, 2000, 55(2):209-218(in Chinese).

    [21] EDMUNDS W M. Bromine geochemistry of british groundwaters[J]. Mineralogical Magazine, 1996, 60(399):275-284.
    [22] 杨永亮, 刘崴, 刘晓端, 等. 辽宁省西部和沈阳地区河水及地下水中溴的分布与污染特征[J]. 环境化学, 2009, 28(6):924-928.

    YANG Y L, LIU W, LIU X D, et al. Distribution and contamination characteristics of bromine in surface water and groundwater from the western Liaoning and Shenyang area[J]. Environmental Chemistry, 2009, 28(6):924-928(in Chinese).

    [23] 支兵发, 姚普, 姜守俊, 等. 珠江三角洲地下咸水形成的水化学证据[J]. 水文地质工程地质, 2015, 42(4):133-139.

    ZHI B F, YAO P, JIANG S J, et al. Hydrochemical evidences of saline groundwater genesis in the Pearl River delta area[J]. Hydrogeology and Engineering Geology, 2015, 42(4):133-149(in Chinese).

    [24] 赵永红, 杨家英, 王航, 等. 地热水氢氧同位素分布特性[J]. 地球物理学进展, 2017, 32(6):2415-2423.

    ZHAO Y H,YANG J Y,WANG H,et al. Hydrogen and oxygen isotope distribution characteristics of geothermal water[J]. Progress in Geophysics, 2017, 32(6):2415-2423(in Chinese).

    [25] QIU X, WANG Y, WANG Z, et al. Determining the origin, circulation path and residence time of geothermal groundwater using multiple isotopic techniques in the Heyuan Fault Zone of Southern China[J]. Journal of Hydrology, 2018, 567:339-350.
    [26] CHANDRAJITH R, BARTH J A C, SUBASINGHE N D, et al. Geochemical and isotope characterization of geothermal spring waters in Sri Lanka:Evidence for steeper than expected geothermal gradients[J]. Journal of Hydrology (Amsterdam), 2013, 476:360-369.
    [27] 于津生. 中国同位素地球化学研究[M]. 北京:科学出版社, 1997. YU J S. Isotopic geochemistry of China[M]. Beijing:Science Press, 1997(in Chinese).
    [28] 孙占学, 吴红梅. 地热系统中矿物-流体化学平衡的判断及热储温度的估算[J]. 地球学报, 1999,20(增刊):595-598. SUN Z X, WU H M. Calculation of the fluid-rock equilibrium state and geothermal reservoir temperatures in the geothermal system[J].Acta Geoscientia Sinica-Bulletin of the Chinese Academy of Geological Sciences, 1999

    ,20(sup):595-598(in Chinese).

    [29] GIGGENBACH W F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica Et Cosmochimica Acta, 1988, 52(12):2749-2765.
    [30] 郭静,毛绪美,童晟,等.水化学温度计估算粤西沿海深部地热系统热交换温度[J].地球科学-中国地质大学学报,2016,41(12):2075-2087.

    GUO J, MAO X M, TONG S, et al. Using hydrochemical geothermometers calculate exchange temperature of deep geothermal system in west coastal area of Guangdong Province[J]. Earth Science, 2016,41(12):2075-2087(in Chinese).

    [31] 唐晓音,黄少鹏,杨树春,等.南海珠江口盆地钻井BHT温度校正及现今地温场特征[J]. 地球物理学报,2016,59(8):2911-2921.

    TANG X Y, HUANG S P, YANG S C, et al. Correcting on logging-derived temperatures of the Pearl River Mouth Basin and characteristics of its present temperature field[J]. Chinese Journal of Geophysics, 2016,59(8):2911-2921(in Chinese).

    [32] 钟建强, 詹文欢, 古森昌,等. 珠江三角洲地热田远景的构造环境分析[J]. 大地构造与成矿学, 1996,20(2):134-140.

    ZHONG J Q, ZHAN W H, GU S C, et al. The analyses of structure environment of geothermal potential areas in Pearl River Delta[J]. Geotectonica et Metallogenia, 1996,20(2):134-140(in Chinese).

  • 加载中
计量
  • 文章访问数:  1998
  • HTML全文浏览数:  1998
  • PDF下载数:  95
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-03-06

广东江门地热水水文地球化学特征及来源分析

    通讯作者: 陈建耀, E-mail: chenjyao@mail.sysu.edu.cn
  • 1. 中山大学地理科学与规划学院, 广东省城市化与地理环境空间模拟重点实验室, 广州, 510275;
  • 2. 中国水利水电科学研究院, 北京, 100038
基金项目:

国家自然科学基金(41771027,41701585,41611140112,41961144027),广东省自然科学基金(2017A030310309),亚太全球变化研究组织APN项目(CRRP2019-09MY-Onodera),中央高校基本业务费(17lgpy40)和广东省水利科技创新项目(2018年度)资助.

摘要: 粤西沿海地带地热资源丰富,探索其水文地球化学的特征有利于地热资源的保护和合理开发利用.本文以广东省江门地区为例,对该研究区地热水的水化学和稳定同位素(δD、δ18O)特征进行分析,并探讨该地热系统的水循环过程,包括补给源、补给高程、热储温度、循环深度等.结果表明,区域内热水温度为39.2-80℃,pH值为7.31-10.04,属于中低温偏碱性水;距海岸线从远到近将热水分成A、B、C组(A组约65 km,B组约30 km,C组约5 km),其TDS平均值(A组149.06 mg·L-1,B组765.78 mg·L-1,C组4322.23 mg·L-1)随着与海岸带距离的增加呈下降趋势,水化学类型从HCO3-Na型变为Cl-Na型;据Schoeller图、γNa/γ(Na+Cl)和Br/Cl比值推测,地热水上升过程可能受地表水、浅层地下水或者海水的混合作用;稳定同位素数据表明,地热水补给来源是大气降水,补给区为出露区附近的244-698 m的丘陵或山地,无明显的"氧漂移"现象,热储温度在83-197℃左右,循环深度约1.6-4.6 km,属于深循环对流型中低温地热系统,符合广东大部分已探明地热田的一般特征.

English Abstract

参考文献 (32)

目录

/

返回文章
返回