城郊关键带土壤中溶解性有机质的光谱特性及其时空变异

马琦琦, 李刚, 魏永. 城郊关键带土壤中溶解性有机质的光谱特性及其时空变异[J]. 环境化学, 2020, (2): 455-466. doi: 10.7524/j.issn.0254-6108.2019031103
引用本文: 马琦琦, 李刚, 魏永. 城郊关键带土壤中溶解性有机质的光谱特性及其时空变异[J]. 环境化学, 2020, (2): 455-466. doi: 10.7524/j.issn.0254-6108.2019031103
MA Qiqi, LI Gang, WEI Yong. Spectral characteristics and spatiotemporal variation of DOM in Peri-urban Critical Zone[J]. Environmental Chemistry, 2020, (2): 455-466. doi: 10.7524/j.issn.0254-6108.2019031103
Citation: MA Qiqi, LI Gang, WEI Yong. Spectral characteristics and spatiotemporal variation of DOM in Peri-urban Critical Zone[J]. Environmental Chemistry, 2020, (2): 455-466. doi: 10.7524/j.issn.0254-6108.2019031103

城郊关键带土壤中溶解性有机质的光谱特性及其时空变异

    通讯作者: 李刚, E-mail: gli@iue.ac.cn 魏永, E-mail: weiyong@cczu.edu.cn
  • 基金项目:

    国家重点研发计划(2017YFE0119000)和国家自然科学基金(41571130063)资助.

Spectral characteristics and spatiotemporal variation of DOM in Peri-urban Critical Zone

    Corresponding authors: LI Gang, gli@iue.ac.cn ;  WEI Yong, weiyong@cczu.edu.cn
  • Fund Project: Supported by National Key Research and Development Project (2017YFE0119000) and National Natural Science Foundation of China (41571130063).
  • 摘要: 溶解性有机质(DOM)作为地球关键带中物质与能量循环的重要活性组分,其与关键带中诸多重要环境过程有着密切关系.本研究以宁波樟溪流域作为城郊关键带的典型代表区域,采集土壤样品,结合紫外可见光谱(UV-Vis)、三维荧光光谱(3D-EEM)进行特征表征,分析不同类型土壤中DOM的分布特征、影响因素和季节性变化规律.主要结果如下:林地DOC平均含量均大于耕地,其中林地秋季(15.4 mg·L-1)>林地春季(12.5 mg·L-1);耕地秋季(11.9 mg·L-1)>耕地春季(11.4 mg·L-1);DOM结构在紫外可见光谱下表现为耕地DOM芳香化程度(SUVA254)、疏水性组分(SUVA260)和分子量(SR)较林地大,其中耕地秋季最为突出;三维荧光光谱结合平行因子分析(PARAFAC)把土壤DOM分为5种组分,主要以富里酸类物质为主(C1、C3、C5),也含有色氨酸、酪氨酸类蛋白质(C4)和腐殖酸(C2)等物质,其中耕地春季的腐殖化程度最大,耕地秋季比春季含有较多类蛋白质,林地较耕地含有更多的类蛋白质,林地春秋两季中DOM结构变化不大.
  • 加载中
  • [1] 许中坚,刘广深,刘维屏. 土壤中溶解性有机质的环境特性与行为[J]. 环境化学, 2003, 22(5):427-433.

    XU Z J, LIU G S, LIU W P. Environmental characteristic and behavior of dissolved organic matter in soils[J]. Environmental Chemistry, 2003, 22(5):427-433(in Chinese).

    [2] 何伟,白泽琳,李一龙,等. 溶解性有机质特性分析与来源解析的研究进展[J]. 环境科学学报, 2016, 36(2):359-372.

    HE W, BAI Z l, LI Y L, et al. Advances in the characteristics analysis and source identification of the dissolved organic matter[J]. Acta Scientiae Circumstantiae, 2016, 36(2):359-372(in Chinese).

    [3] ASHWORTH D J, ALLOWAY B J. Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc[J]. Environmental Pollution, 2004, 127(1):137-144.
    [4] WU J S, JIANG P K, CHANG S X, et al. Dissolved soil organic carbon and nitrogen were affected by conversion of native forests to plantations in subtropical China[J]. Canadian Journal of Soil Science, 2010, 90(1):27-36.
    [5] LIU H F, YANG X M, LIU G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 2017, 185:907-917.
    [6] LI J, COOPER J M, LIN Z A, et al. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain[J]. Applied Soil Ecology, 2015, 96:75-87.
    [7] HUR J, LEE B M. Characterization of binding site heterogeneity for copper within dissolved organic matter fractions using two-dimensional correlation fluorescence spectroscopy[J]. Chemosphere, 2011, 83(11):1603-1611.
    [8] 赵晨,王崇臣,李俊奇,等. 径流雨水中不同分子量溶解性有机物分布及其与Cu2+相互作用[J]. 环境化学, 2016, 35(4):757-765.

    ZHAO C, WANG C C, LI J Q, et al. Molecular weight distribution of dissolved organic matter in storm water runoff and their interaction with Cu2+[J]. Environmental Chemistry, 2016, 35(4):757-765(in Chinese).

    [9] AIKEN G R, HSU-KIM H, RYAN J N. Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids[J]. Environmental Science & Technology, 2011, 45(8):3196-3201.
    [10] 赵方凯,杨磊,陈利顶,等. 城郊生态系统土壤安全:问题与挑战[J]. 生态学报, 2018, 38(12):4109-4120.

    ZHAO F K, YANG L, CHEN L D, et al. Soil security in peri-urban ecosystems:problems and challenges[J]. Acta Ecologica Sinica, 2018, 38(12):4109-4120(in Chinese).

    [11] ZHU Y G, REID B J, MEHARG A A, et al. Optimizing peri-urban ecosystems (PURE) to re-couple urban-rural symbiosis[J]. Science of the Total Environment, 2017, 586:1085-1090.
    [12] LI G, SUN G X, REN Y, et al. Urban soil and human health:A review[J]. European Journal of Soil Science, 2018, 69(1):196-215.
    [13] ZHOU L M, DICKINSON R E, TIAN Y H, et al. Evidence for a significant urbanization effect on climate in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(26):9540-9544.
    [14] SETO K C, GUNERALP B, HUTYRA L R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(40):16083-16088.
    [15] 汪景宽,李丛,于树,等. 不同肥力棕壤溶解性有机碳、氮生物降解特性[J]. 生态学报, 2008, 28(12):6165-6171.

    WANG J K, LI C, YU S, et al. The biodegradation of dissolved organic carbon and nitrogen in brown earth with different fertility levels[J]. Acta Ecologica Sinica, 2008, 28(12):6165-6171(in Chinese).

    [16] MELILLO J M, STEUDLER P A, ABER J D, et al. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science, 2002, 298(5601):2173-2176.
    [17] LEROY F, GOGO S, GUIMBAUD C, et al. Vegetation composition controls temperature sensitivity of CO2 and CH4 emissions and DOC concentration in peatlands[J]. Soil Biology & Biochemistry, 2017, 107:164-167.
    [18] 倪进治,徐建民,谢正苗,等. 不同施肥处理下土壤水溶性有机碳含量及其组成特征的研究[J]. 土壤学报, 2003, 40(5):724-730.

    NI J Z, XU J M, XIE Z M, et al. Contents of wsoc and characteristics of its composition under different fertilization systems[J]. Acta Pedologica Sinica, 2003, 40(5):724-730(in Chinese).

    [19] GREGORICH E G, ELLERT B H, DRURY C F, et al. Fertilization effects on soil organic matter turnover and corn residue C storage[J]. Soil Science Society of America Journal, 1996, 60(2):472-476.
    [20] 梁俭,江韬,卢松,等. 淹水条件下三峡库区典型消落带土壤释放DOM的光谱特征:紫外-可见吸收光谱[J]. 环境科学, 2016, 37(7):2496-2505.

    LIANG J, JIANG T, LU S, et al. Spectral characteristics of dissolved organic matter (DOM) releases from soils of typical water-level fluctuation zones of three gorges reservoir areas:UV-Vis spectrum[J]. Environmental Science, 2016, 37(7):2496-2505(in Chinese).

    [21] 刘兆冰,梁文健,秦礼萍,等. 渤海和北黄海有色溶解有机物(CDOM)的分布特征和季节变化[J]. 环境科学, 2019, 40(3):190-200.

    LIU Z B, LIANG W J, QIN L P, et al. Distribution and seasonal variations of chromophoric dissolved organic matter(CDOM) in the bohai sea and the North Yellow Sea[J]. Environmental Science, 2019, 10(3):190-200(in Chinese).

    [22] 李帅东,姜泉良,黎烨,等. 环滇池土壤溶解性有机质(DOM)的光谱特征及来源分析[J]. 光谱学与光谱分析, 2017, 37(5):1448-1454.

    LI S D, JIANG Q L, LI Y, et al. Spectroscopic characteristics and sources of dissolved organic matter from soils around Dianchi Lake,Kunming[J]. Spectroscopy and Spectral Analysis, 2017, 37(5):1448-1454(in Chinese).

    [23] MURPHY K R, HAMBLY A, SINGH S, et al. Organic matter fluorescence in municipal water recycling schemes:Toward a unified PARAFAC Model[J]. Environmental Science & Technology, 2011, 45(7):2909-2916.
    [24] 李昀,魏鸿杰,王侃,等. 溶解性有机物(DOM)与区域土地利用的关系:基于三维荧光-平行因子分析(EEM-PARAFAC)[J]. 环境科学, 2019, 40(4):1751-1759.

    LI Y, WEI H J, WANG K, et al. Relationship analysis between dissolved organic matter (DOM) and watershed land-use:based on three-dimensional fluorescence-parallel factor analysis (EEM-PARAFAC)[J]. Environmental Science, 2019, 40(4):1751-1759(in Chinese).

    [25] 张军政,杨谦,席北斗,等. 垃圾填埋渗滤液溶解性有机物组分的光谱学特性研究[J]. 光谱学和光谱分析, 2008, 28(11):2583-2587.

    ZHANG J Z, YANG Q, XI B D, et al. Study on spectral characteristic of dissolved organic matter fractions extracted from municipal solid waste landfill leachate[J]. Spectroscopy and Spectral Analysis, 2008, 28(11):2583-2587(in Chinese).

    [26] LIU H F, WU Y, AI Z M, et al. Effects of the interaction between temperature and revegetation on the microbial degradation of soil dissolved organic matter (DOM)-A DOM incubation experiment[J]. Geoderma, 2019, 337:812-824.
    [27] SUN S H, LIU J J, CHANG S X. Temperature sensitivity of soil carbon and nitrogen mineralization:Impacts of nitrogen species and land use type[J]. Plant and Soil, 2013, 372(1-2):597-608.
    [28] FELLMAN J B, D'AMORE D V, HOOD E, et al. Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeast Alaska[J]. Biogeochemistry, 2008, 88(2):169-184.
    [29] XU H C, JI L, KONG M, et al. Molecular weight-dependent adsorption fractionation of natural organic matter on ferrihydrite colloids in aquatic environment[J]. Chemical Engineering Journal, 2019, 363:356-364.
    [30] HE W, LEE J H, HUR J. Anthropogenic signature of sediment organic matter probed by UV-Visible and fluorescence spectroscopy and the association with heavy metal enrichment[J]. Chemosphere, 2016, 150:184-193.
    [31] 柳婷,杨海燕,董慧峪,等. 饮用水处理过程中溶解性有机物表征方法的研究进展[J]. 环境化学, 2019, 38(2):263-273.

    LIU T, YANG H Y, DONG H Y, et al. Research progress of dissolved organic matter characterization in drinking water treatment[J]. Environmental Chemistry, 2019, 38(2):263-273(in Chinese).

    [32] MURPHY K R, STEDMON C A, WENIG P, et al. OpenFluor- an online spectral library of auto-fluorescence by organic compounds in the environment[J]. Analytical Methods, 2014, 6(3):658-661.
    [33] OHNO T, FERNANDEZ I J, HIRADATE S, et al. Effects of soil acidification and forest type on water soluble soil organic matter properties[J]. Geoderma, 2007, 140(1-2):176-187.
    [34] HE X S, XI B D, WEI Z M, et al. Fluorescence excitation-emission matrix spectroscopy with regional integration analysis for characterizing composition and transformation of dissolved organic matter in landfill leachates[J]. Journal of Hazardous Materials, 2011, 190(1-3):293-299.
    [35] BI R, LU Q, YUAN T, et al. Electrochemical and spectroscopic characteristics of dissolved organic matter in a forest soil profile[J]. Journal of Environmental Sciences, 2013, 25(10):2093-2101.
    [36] WILSON H F, XENOPOULOS M A. Effects of agricultural land use on the composition of fluvial dissolved organic matter[J]. Nature Geoscience, 2009, 2(1):37-41.
    [37] BAKER A, INVERARITY R. Protein-like fluorescence intensity as a possible tool for determining river water quality[J]. Hydrological Processes, 2004, 18(15):2927-2945.
    [38] GUO W D, XU J, WANG J P, et al. Characterization of dissolved organic matter in urban sewage using excitation emission matrix fluorescence spectroscopy and parallel factor analysis[J]. Journal of Environmental Sciences, 2010, 22(11):1728-1734.
    [39] LI L, GAO N Y, DENG Y, et al. Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds[J]. Water Research, 2012, 46(4):1233-1240.
    [40] BAGHOTH S A, SHARMA S K, AMY G L. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC[J]. Water Research, 2011, 45(2):797-809.
    [41] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-Emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24):5701-5710.
    [42] NGUYEN H V M, HUR J. Tracing the sources of refractory dissolved organic matter in a large artificial lake using multiple analytical tools[J]. Chemosphere, 2011, 85(5):782-789.
    [43] 郭旭晶,彭涛,王月,等. 湖泊沉积物孔隙水溶解性有机质组成与光谱特性[J]. 环境化学, 2013, 32(1):79-84.

    GUO X J, PENG T, WANG Y, et al. Study on the composition and spectral properties of dissolved organic matter extracted from lake sediment pore water in lake[J]. Environmental Chemistry, 2013, 32(1):79-84(in Chinese).

    [44] LIU C, LI Z W, BERHE A A, et al. Characterizing dissolved organic matter in eroded sediments from a loess hilly catchment using fluorescence EEM-PARAFAC and UV-Visible absorption:Insights from source identification and carbon cycling[J]. Geoderma, 2019, 334:37-48.
    [45] KELTON N, MOLOT L A, DILLON P J. Spectrofluorometric properties of dissolved organic matter from Central and Southern Ontario streams and the influence of iron and irradiation[J]. Water Research, 2007, 41(3):638-646.
    [46] 高洁,江韬,李璐璐,等. 三峡库区消落带土壤中溶解性有机质(DOM)吸收及荧光光谱特征[J]. 环境科学, 2015, 36(1):151-162.

    GAO J, JIANG T, LI L L, et al. Ultraviolet-visible (UV-Vis) and fluorescence spectral characteristics of dissolved organic matter(DOM) in soils of water-level fluctuation zones of the Three Gorges reservoir region[J]. Environmental Science, 2015, 36(1):151-162(in Chinese).

    [47] 李璐璐,江韬,闫金龙,等. 三峡库区典型消落带土壤及沉积物中溶解性有机质(DOM)的紫外-可见光谱特征[J]. 环境科学, 2014, 35(3):933-941.

    LI L L, JIANG T, YAN J L, et al. Ultraviolet-visible (UV-Vis) spectral characteristics of dissolved organic matter (DOM) in soils and sediments of typical water-level fluctuation zones of Three Gorges Reservoir areas[J]. Environmental Science, 2014, 35(3):933-941(in Chinese).

    [48] 李晓萌,郭华明,曹永生,等. 沉积物不同提取态有机物特征及水文地球化学意义——以河套盆地典型研究区为例[J]. 水文地质工程地质, 2017, 44(2):40-47.

    LI X M, GUO H M, CAO Y S, et al. Characteristics of different extractable organic matter in sediments and its hydrogeochemical significance:A case study of the typical study area in hetao basin[J]. Hydrogeology & Engineering Geology, 2017, 44(2):40-47(in Chinese).

    [49] YANG L Y, CHEN W, ZHUANG W E, et al. Characterization and bioavailability of rainwater dissolved organic matter at the southeast coast of China using absorption spectroscopy and fluorescence EEM-PARAFAC[J]. Estuarine Coastal and Shelf Science, 2019, 217:45-55.
  • 加载中
计量
  • 文章访问数:  2320
  • HTML全文浏览数:  2320
  • PDF下载数:  60
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-03-11

城郊关键带土壤中溶解性有机质的光谱特性及其时空变异

    通讯作者: 李刚, E-mail: gli@iue.ac.cn ;  魏永, E-mail: weiyong@cczu.edu.cn
  • 1. 常州大学环境与安全工程学院, 常州, 213164;
  • 2. 中国科学院城市环境研究所城市与环境健康重点实验室, 厦门, 361021;
  • 3. 中国科学院宁波城市环境观测研究站, 宁波, 315830
基金项目:

国家重点研发计划(2017YFE0119000)和国家自然科学基金(41571130063)资助.

摘要: 溶解性有机质(DOM)作为地球关键带中物质与能量循环的重要活性组分,其与关键带中诸多重要环境过程有着密切关系.本研究以宁波樟溪流域作为城郊关键带的典型代表区域,采集土壤样品,结合紫外可见光谱(UV-Vis)、三维荧光光谱(3D-EEM)进行特征表征,分析不同类型土壤中DOM的分布特征、影响因素和季节性变化规律.主要结果如下:林地DOC平均含量均大于耕地,其中林地秋季(15.4 mg·L-1)>林地春季(12.5 mg·L-1);耕地秋季(11.9 mg·L-1)>耕地春季(11.4 mg·L-1);DOM结构在紫外可见光谱下表现为耕地DOM芳香化程度(SUVA254)、疏水性组分(SUVA260)和分子量(SR)较林地大,其中耕地秋季最为突出;三维荧光光谱结合平行因子分析(PARAFAC)把土壤DOM分为5种组分,主要以富里酸类物质为主(C1、C3、C5),也含有色氨酸、酪氨酸类蛋白质(C4)和腐殖酸(C2)等物质,其中耕地春季的腐殖化程度最大,耕地秋季比春季含有较多类蛋白质,林地较耕地含有更多的类蛋白质,林地春秋两季中DOM结构变化不大.

English Abstract

参考文献 (49)

目录

/

返回文章
返回