城郊关键带土壤中溶解性有机质的光谱特性及其时空变异
Spectral characteristics and spatiotemporal variation of DOM in Peri-urban Critical Zone
-
摘要: 溶解性有机质(DOM)作为地球关键带中物质与能量循环的重要活性组分,其与关键带中诸多重要环境过程有着密切关系.本研究以宁波樟溪流域作为城郊关键带的典型代表区域,采集土壤样品,结合紫外可见光谱(UV-Vis)、三维荧光光谱(3D-EEM)进行特征表征,分析不同类型土壤中DOM的分布特征、影响因素和季节性变化规律.主要结果如下:林地DOC平均含量均大于耕地,其中林地秋季(15.4 mg·L-1)>林地春季(12.5 mg·L-1);耕地秋季(11.9 mg·L-1)>耕地春季(11.4 mg·L-1);DOM结构在紫外可见光谱下表现为耕地DOM芳香化程度(SUVA254)、疏水性组分(SUVA260)和分子量(SR)较林地大,其中耕地秋季最为突出;三维荧光光谱结合平行因子分析(PARAFAC)把土壤DOM分为5种组分,主要以富里酸类物质为主(C1、C3、C5),也含有色氨酸、酪氨酸类蛋白质(C4)和腐殖酸(C2)等物质,其中耕地春季的腐殖化程度最大,耕地秋季比春季含有较多类蛋白质,林地较耕地含有更多的类蛋白质,林地春秋两季中DOM结构变化不大.Abstract: As an important component of substance and energy cycle of Earth's Critical Zone, dissolved organic matter (DOM) has close relationship with many other environmental processes in the Critical Zone. In this study, Ningbo Zhangxi River was used as a typical representative area of peri-urban critical zone. Soil samples were collected and characterized by ultraviolet-visible (UV-Vis) absorption spectroscopy and three-dimensional fluorescence spectroscopy (3D-EEM), and the distribution characteristics, influencing factors and seasonal variation of DOM in different types of soil were analyzed. The main results showed that the average DOC concentrations in forestland were higher than the farmland and with the forestland autumn (15.4 mg·L-1) >forestland spring(12.5 mg·L-1), and farmland autumn (11.9 mg·L-1) > farmland spring (11.4 mg·L-1). The DOM structure in the UV-Vis spectra indicated the farmland DOM humification degree (SUVA254), hydrophobicity degree (SUVA260) and molecular weight (SR) were larger than forestland, of which the farmland is the most prominent in autumn. 3D-EEM in combination with parallel factor analysis (PARAFAC) suggest the soil DOM could be divided into 5 components, mainly fulvic-acid like (C1,C3,C5), accompanied by tryptophan, tyrosine protein-like (C4) and humic-acid like(C2), among which the spring of farmland had the greatest degree of humification, the autumn of farmland contained more protein, and forestland had more kinds of protein than farmland with less changes of the DOM structure of forestland in spring and autumn seasons.
-
[1] 许中坚,刘广深,刘维屏. 土壤中溶解性有机质的环境特性与行为[J]. 环境化学, 2003, 22(5):427-433. XU Z J, LIU G S, LIU W P. Environmental characteristic and behavior of dissolved organic matter in soils[J]. Environmental Chemistry, 2003, 22(5):427-433(in Chinese).
[2] 何伟,白泽琳,李一龙,等. 溶解性有机质特性分析与来源解析的研究进展[J]. 环境科学学报, 2016, 36(2):359-372. HE W, BAI Z l, LI Y L, et al. Advances in the characteristics analysis and source identification of the dissolved organic matter[J]. Acta Scientiae Circumstantiae, 2016, 36(2):359-372(in Chinese).
[3] ASHWORTH D J, ALLOWAY B J. Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc[J]. Environmental Pollution, 2004, 127(1):137-144. [4] WU J S, JIANG P K, CHANG S X, et al. Dissolved soil organic carbon and nitrogen were affected by conversion of native forests to plantations in subtropical China[J]. Canadian Journal of Soil Science, 2010, 90(1):27-36. [5] LIU H F, YANG X M, LIU G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 2017, 185:907-917. [6] LI J, COOPER J M, LIN Z A, et al. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain[J]. Applied Soil Ecology, 2015, 96:75-87. [7] HUR J, LEE B M. Characterization of binding site heterogeneity for copper within dissolved organic matter fractions using two-dimensional correlation fluorescence spectroscopy[J]. Chemosphere, 2011, 83(11):1603-1611. [8] 赵晨,王崇臣,李俊奇,等. 径流雨水中不同分子量溶解性有机物分布及其与Cu2+相互作用[J]. 环境化学, 2016, 35(4):757-765. ZHAO C, WANG C C, LI J Q, et al. Molecular weight distribution of dissolved organic matter in storm water runoff and their interaction with Cu2+[J]. Environmental Chemistry, 2016, 35(4):757-765(in Chinese).
[9] AIKEN G R, HSU-KIM H, RYAN J N. Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids[J]. Environmental Science & Technology, 2011, 45(8):3196-3201. [10] 赵方凯,杨磊,陈利顶,等. 城郊生态系统土壤安全:问题与挑战[J]. 生态学报, 2018, 38(12):4109-4120. ZHAO F K, YANG L, CHEN L D, et al. Soil security in peri-urban ecosystems:problems and challenges[J]. Acta Ecologica Sinica, 2018, 38(12):4109-4120(in Chinese).
[11] ZHU Y G, REID B J, MEHARG A A, et al. Optimizing peri-urban ecosystems (PURE) to re-couple urban-rural symbiosis[J]. Science of the Total Environment, 2017, 586:1085-1090. [12] LI G, SUN G X, REN Y, et al. Urban soil and human health:A review[J]. European Journal of Soil Science, 2018, 69(1):196-215. [13] ZHOU L M, DICKINSON R E, TIAN Y H, et al. Evidence for a significant urbanization effect on climate in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(26):9540-9544. [14] SETO K C, GUNERALP B, HUTYRA L R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(40):16083-16088. [15] 汪景宽,李丛,于树,等. 不同肥力棕壤溶解性有机碳、氮生物降解特性[J]. 生态学报, 2008, 28(12):6165-6171. WANG J K, LI C, YU S, et al. The biodegradation of dissolved organic carbon and nitrogen in brown earth with different fertility levels[J]. Acta Ecologica Sinica, 2008, 28(12):6165-6171(in Chinese).
[16] MELILLO J M, STEUDLER P A, ABER J D, et al. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science, 2002, 298(5601):2173-2176. [17] LEROY F, GOGO S, GUIMBAUD C, et al. Vegetation composition controls temperature sensitivity of CO2 and CH4 emissions and DOC concentration in peatlands[J]. Soil Biology & Biochemistry, 2017, 107:164-167. [18] 倪进治,徐建民,谢正苗,等. 不同施肥处理下土壤水溶性有机碳含量及其组成特征的研究[J]. 土壤学报, 2003, 40(5):724-730. NI J Z, XU J M, XIE Z M, et al. Contents of wsoc and characteristics of its composition under different fertilization systems[J]. Acta Pedologica Sinica, 2003, 40(5):724-730(in Chinese).
[19] GREGORICH E G, ELLERT B H, DRURY C F, et al. Fertilization effects on soil organic matter turnover and corn residue C storage[J]. Soil Science Society of America Journal, 1996, 60(2):472-476. [20] 梁俭,江韬,卢松,等. 淹水条件下三峡库区典型消落带土壤释放DOM的光谱特征:紫外-可见吸收光谱[J]. 环境科学, 2016, 37(7):2496-2505. LIANG J, JIANG T, LU S, et al. Spectral characteristics of dissolved organic matter (DOM) releases from soils of typical water-level fluctuation zones of three gorges reservoir areas:UV-Vis spectrum[J]. Environmental Science, 2016, 37(7):2496-2505(in Chinese).
[21] 刘兆冰,梁文健,秦礼萍,等. 渤海和北黄海有色溶解有机物(CDOM)的分布特征和季节变化[J]. 环境科学, 2019, 40(3):190-200. LIU Z B, LIANG W J, QIN L P, et al. Distribution and seasonal variations of chromophoric dissolved organic matter(CDOM) in the bohai sea and the North Yellow Sea[J]. Environmental Science, 2019, 10(3):190-200(in Chinese).
[22] 李帅东,姜泉良,黎烨,等. 环滇池土壤溶解性有机质(DOM)的光谱特征及来源分析[J]. 光谱学与光谱分析, 2017, 37(5):1448-1454. LI S D, JIANG Q L, LI Y, et al. Spectroscopic characteristics and sources of dissolved organic matter from soils around Dianchi Lake,Kunming[J]. Spectroscopy and Spectral Analysis, 2017, 37(5):1448-1454(in Chinese).
[23] MURPHY K R, HAMBLY A, SINGH S, et al. Organic matter fluorescence in municipal water recycling schemes:Toward a unified PARAFAC Model[J]. Environmental Science & Technology, 2011, 45(7):2909-2916. [24] 李昀,魏鸿杰,王侃,等. 溶解性有机物(DOM)与区域土地利用的关系:基于三维荧光-平行因子分析(EEM-PARAFAC)[J]. 环境科学, 2019, 40(4):1751-1759. LI Y, WEI H J, WANG K, et al. Relationship analysis between dissolved organic matter (DOM) and watershed land-use:based on three-dimensional fluorescence-parallel factor analysis (EEM-PARAFAC)[J]. Environmental Science, 2019, 40(4):1751-1759(in Chinese).
[25] 张军政,杨谦,席北斗,等. 垃圾填埋渗滤液溶解性有机物组分的光谱学特性研究[J]. 光谱学和光谱分析, 2008, 28(11):2583-2587. ZHANG J Z, YANG Q, XI B D, et al. Study on spectral characteristic of dissolved organic matter fractions extracted from municipal solid waste landfill leachate[J]. Spectroscopy and Spectral Analysis, 2008, 28(11):2583-2587(in Chinese).
[26] LIU H F, WU Y, AI Z M, et al. Effects of the interaction between temperature and revegetation on the microbial degradation of soil dissolved organic matter (DOM)-A DOM incubation experiment[J]. Geoderma, 2019, 337:812-824. [27] SUN S H, LIU J J, CHANG S X. Temperature sensitivity of soil carbon and nitrogen mineralization:Impacts of nitrogen species and land use type[J]. Plant and Soil, 2013, 372(1-2):597-608. [28] FELLMAN J B, D'AMORE D V, HOOD E, et al. Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeast Alaska[J]. Biogeochemistry, 2008, 88(2):169-184. [29] XU H C, JI L, KONG M, et al. Molecular weight-dependent adsorption fractionation of natural organic matter on ferrihydrite colloids in aquatic environment[J]. Chemical Engineering Journal, 2019, 363:356-364. [30] HE W, LEE J H, HUR J. Anthropogenic signature of sediment organic matter probed by UV-Visible and fluorescence spectroscopy and the association with heavy metal enrichment[J]. Chemosphere, 2016, 150:184-193. [31] 柳婷,杨海燕,董慧峪,等. 饮用水处理过程中溶解性有机物表征方法的研究进展[J]. 环境化学, 2019, 38(2):263-273. LIU T, YANG H Y, DONG H Y, et al. Research progress of dissolved organic matter characterization in drinking water treatment[J]. Environmental Chemistry, 2019, 38(2):263-273(in Chinese).
[32] MURPHY K R, STEDMON C A, WENIG P, et al. OpenFluor- an online spectral library of auto-fluorescence by organic compounds in the environment[J]. Analytical Methods, 2014, 6(3):658-661. [33] OHNO T, FERNANDEZ I J, HIRADATE S, et al. Effects of soil acidification and forest type on water soluble soil organic matter properties[J]. Geoderma, 2007, 140(1-2):176-187. [34] HE X S, XI B D, WEI Z M, et al. Fluorescence excitation-emission matrix spectroscopy with regional integration analysis for characterizing composition and transformation of dissolved organic matter in landfill leachates[J]. Journal of Hazardous Materials, 2011, 190(1-3):293-299. [35] BI R, LU Q, YUAN T, et al. Electrochemical and spectroscopic characteristics of dissolved organic matter in a forest soil profile[J]. Journal of Environmental Sciences, 2013, 25(10):2093-2101. [36] WILSON H F, XENOPOULOS M A. Effects of agricultural land use on the composition of fluvial dissolved organic matter[J]. Nature Geoscience, 2009, 2(1):37-41. [37] BAKER A, INVERARITY R. Protein-like fluorescence intensity as a possible tool for determining river water quality[J]. Hydrological Processes, 2004, 18(15):2927-2945. [38] GUO W D, XU J, WANG J P, et al. Characterization of dissolved organic matter in urban sewage using excitation emission matrix fluorescence spectroscopy and parallel factor analysis[J]. Journal of Environmental Sciences, 2010, 22(11):1728-1734. [39] LI L, GAO N Y, DENG Y, et al. Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds[J]. Water Research, 2012, 46(4):1233-1240. [40] BAGHOTH S A, SHARMA S K, AMY G L. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC[J]. Water Research, 2011, 45(2):797-809. [41] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-Emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24):5701-5710. [42] NGUYEN H V M, HUR J. Tracing the sources of refractory dissolved organic matter in a large artificial lake using multiple analytical tools[J]. Chemosphere, 2011, 85(5):782-789. [43] 郭旭晶,彭涛,王月,等. 湖泊沉积物孔隙水溶解性有机质组成与光谱特性[J]. 环境化学, 2013, 32(1):79-84. GUO X J, PENG T, WANG Y, et al. Study on the composition and spectral properties of dissolved organic matter extracted from lake sediment pore water in lake[J]. Environmental Chemistry, 2013, 32(1):79-84(in Chinese).
[44] LIU C, LI Z W, BERHE A A, et al. Characterizing dissolved organic matter in eroded sediments from a loess hilly catchment using fluorescence EEM-PARAFAC and UV-Visible absorption:Insights from source identification and carbon cycling[J]. Geoderma, 2019, 334:37-48. [45] KELTON N, MOLOT L A, DILLON P J. Spectrofluorometric properties of dissolved organic matter from Central and Southern Ontario streams and the influence of iron and irradiation[J]. Water Research, 2007, 41(3):638-646. [46] 高洁,江韬,李璐璐,等. 三峡库区消落带土壤中溶解性有机质(DOM)吸收及荧光光谱特征[J]. 环境科学, 2015, 36(1):151-162. GAO J, JIANG T, LI L L, et al. Ultraviolet-visible (UV-Vis) and fluorescence spectral characteristics of dissolved organic matter(DOM) in soils of water-level fluctuation zones of the Three Gorges reservoir region[J]. Environmental Science, 2015, 36(1):151-162(in Chinese).
[47] 李璐璐,江韬,闫金龙,等. 三峡库区典型消落带土壤及沉积物中溶解性有机质(DOM)的紫外-可见光谱特征[J]. 环境科学, 2014, 35(3):933-941. LI L L, JIANG T, YAN J L, et al. Ultraviolet-visible (UV-Vis) spectral characteristics of dissolved organic matter (DOM) in soils and sediments of typical water-level fluctuation zones of Three Gorges Reservoir areas[J]. Environmental Science, 2014, 35(3):933-941(in Chinese).
[48] 李晓萌,郭华明,曹永生,等. 沉积物不同提取态有机物特征及水文地球化学意义——以河套盆地典型研究区为例[J]. 水文地质工程地质, 2017, 44(2):40-47. LI X M, GUO H M, CAO Y S, et al. Characteristics of different extractable organic matter in sediments and its hydrogeochemical significance:A case study of the typical study area in hetao basin[J]. Hydrogeology & Engineering Geology, 2017, 44(2):40-47(in Chinese).
[49] YANG L Y, CHEN W, ZHUANG W E, et al. Characterization and bioavailability of rainwater dissolved organic matter at the southeast coast of China using absorption spectroscopy and fluorescence EEM-PARAFAC[J]. Estuarine Coastal and Shelf Science, 2019, 217:45-55.
计量
- 文章访问数: 2320
- HTML全文浏览数: 2320
- PDF下载数: 60
- 施引文献: 0