铜对硒(Ⅳ)在高庙子膨润土中吸附行为的影响

李遥, 时燕琳, 何建刚, 杨小雨, 刘春立. 铜对硒(Ⅳ)在高庙子膨润土中吸附行为的影响[J]. 环境化学, 2020, (2): 334-342. doi: 10.7524/j.issn.0254-6108.2019031503
引用本文: 李遥, 时燕琳, 何建刚, 杨小雨, 刘春立. 铜对硒(Ⅳ)在高庙子膨润土中吸附行为的影响[J]. 环境化学, 2020, (2): 334-342. doi: 10.7524/j.issn.0254-6108.2019031503
LI Yao, SHI Yanlin, HE Jiangang, YANG Xiaoyu, LIU Chunli. Effects of Cu on the sorption of selenite in Gaomiaozi bentonite[J]. Environmental Chemistry, 2020, (2): 334-342. doi: 10.7524/j.issn.0254-6108.2019031503
Citation: LI Yao, SHI Yanlin, HE Jiangang, YANG Xiaoyu, LIU Chunli. Effects of Cu on the sorption of selenite in Gaomiaozi bentonite[J]. Environmental Chemistry, 2020, (2): 334-342. doi: 10.7524/j.issn.0254-6108.2019031503

铜对硒(Ⅳ)在高庙子膨润土中吸附行为的影响

    通讯作者: 刘春立, E-mail: liucl@pku.edu.cn
  • 基金项目:

    国家自然科学基金(U1530112,11475008,U1730245)资助.

Effects of Cu on the sorption of selenite in Gaomiaozi bentonite

    Corresponding author: LIU Chunli, liucl@pku.edu.cn
  • Fund Project: Supported by National Natural Science Foundation of China (U1530112, 11475008, U1730245).
  • 摘要: 硒-79是高放废物(HLW)地质处置库安全评价中重点关注的放射性核素之一.在多重屏障体系中,高放废物外包装起到隔离放射性废物和地下水的作用.已有国家把铜作为废物包装容器的备选材料,如瑞典、芬兰等,而我国还未确定废物包装器材料.因此,研究不同价态的铜与硒(Ⅳ)的相互作用可为我国废物包装器材料选取提供支持.本文使用批式吸附实验法探究了不同价态的铜对硒(Ⅳ)在高庙子膨润土上吸附的影响,结果表明,在碱性条件下硒(Ⅳ)在膨润土上的吸附百分比小于20%,而引入CuCl2后,硒的吸附百分比可达100%.进一步研究发现,硒在铜(Ⅱ)的水解产物氯铜矿上有很强的吸附.膨润土可与氯铜矿发生相互作用,减弱硒(Ⅳ)在氯铜矿上的吸附,在c(Se)=10-4 mol·L-1,pH=6时,引入膨润土后硒的吸附百分比从97%降至70%.在酸性条件下低价态铜,如CuCl、Cu和Cu2O等可将硒(Ⅳ)还原到低价态(0,-I,-II),使得硒的吸附百分比从7.6%提高到90%以上,促进了硒的吸附.在含CuCl、Cu和Cu2O的3种体系中,硒在含CuCl的体系有最快的吸附速率.
  • 加载中
  • [1] ALEJANDRO F M, CHARLET L. Selenium environmental cycling and bioavailability:A structural chemist point of view[J]. Reviews in Environmental Science & Bio/Technology, 2009, 8(1):81-110.
    [2] RAYMAN M P, GOENAGA I H, MIKE S. Food-chain selenium and human health:Spotlight on speciation[J]. British Journal of Nutrition, 2008, 100(2):238-253.
    [3] SCHEINOST A C, CHARLET L. Selenite reduction by mackinawite, magnetite and siderite:XAS characterization of nanosized redox products[J]. Environmental Science & Technology, 2008, 42(6):1984-1989.
    [4] RAIKO H. Disposal canister for spent nuclear fuel-design report[J]. Posiva Report, 2005, 2(61):1-61.
    [5] ANDERSSON C G. Development of fabrication technology for copper canisters with cast inserts[M]. SKB, 2002, 33(25):1-95.
    [6] ALBINSSON Y, CHRISTIANSEN-SÄTMARK B, ENGKVIST I, et al. Transport of actinides and TC through a bentonite backfill containing small quantities of iron or copper[J]. Radiochimica Acta, 1991. 52(1):283-286.
    [7] ZHAO Y, FU B, WU T, et al. Transport of 125-I in compacted GMZ bentonite containing Fe-oxides, Fe-minerals or Cu2O[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308(2):539-544.
    [8] HE J G, SHI Y L, YANG X Y, et al. Influence of Fe(Ⅱ) on the Se(Ⅳ) sorption under oxic/anoxic conditions using bentonite[J]. Chemosphere, 2017, 193:376-384.
    [9] KING F, LILJA C. Scientific basis for corrosion of copper in water and implications for canister lifetimes[J]. British Corrosion Journal, 2011, 46(2):153-158.
    [10] AKERMARK T. Some scientific considerations on the article:A Scientific basis for corrosion of copper in water and implications for canister lifetime[J]. British Corrosion Journal, 2013, 48(6):475-476.
    [11] KING F, JOHANSSON A J, LILJA C. Reply to ‘Some scientific considerations on the article:"Scientific basis for corrosion of copper in water and implications for canister lifetimes" published by F. King and C. Lilja’[J]. Corrosion Engineering, Science and Technology, 2013, 48(6):477-479.
    [12] HEDIN A, JOHANSSON A J, LILJA C, et al. Corrosion of copper in pure O 2 -free water[J]. Corrosion Science, 2018, 137:1-12.
    [13] HULTQUIST G, GRAHAM M J, KODRA O, et al. Corrosion of copper in distilled water without O2 and the detection of produced hydrogen[J]. Corrosion Science, 2015, 95:162-167.
    [14] SMITH J, QIN Z, SHOESMITH D W, et al. Corrosion of copper nuclear waste containers in aqueous sulphide solutions[J]. MRS Proceedings, 2004, 824(5):311-316.
    [15] KING F, AHONEN L, TAXEN C, et al. Copper corrosion under expected conditions in a deep geologic repository[R]. Swedish Nuclear Fuel and Waste Management Co.2001, 33(5):1-171.
    [16] KING, F. Mixed-potential modelling of the corrosion of copper in the presence of sulphide[R]. Posiva Oy. 2008.63:1-66.
    [17] KINNIBURGH D, COOPER D. PhreePlot:Creating graphical output with PHREEQC. Centre for Ecology and Hydrology, UK. 2011.
    [18] NASKARM K S. GHOSH. A rapid one-pot synthesis of hierarchical hollow mesoporous CuO microspheres and their catalytic efficiency for the decomposition of H2O2[J]. RSC Advances, 2013, 3(33):13728-13733.
    [19] CUDENNEC Y, RIOU A, GÉRAULT Y, et al. Synthesis and crystal structures of Cd(OH)Cl and Cu(OH)Cl and relationship to brucite type[J]. Journal of Solid State Chemistry, 2000, 151(2):308-312.
    [20] SANTOS S, UNGUREANU G, RUI B, et al. Selenium contaminated waters:An overview of analytical methods, treatment options and recent advances in sorption methods[J]. Science of the Total Environment, 2015, 521-522(1):246-260.
    [21]
    [22] SMITH E, NAIDU R, ALSTON A M. Chemistry of inorganic arsenic in soils:Ⅱ. Effect of phosphorus, sodium, and calcium on arsenic sorption[J]. Journal of Environmental Quality, 2016, 31(2):557-563.
    [23] MONTAVON G, GUO Z, LVTZENKIRCHEN J, et al. Interaction of selenite with MX-80 bentonite:Effect of minor phases, pH, selenite loading, solution composition and compaction[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2009, 332(2):71-77.
    [24] HE J G, MA B, KANG M L, et al. Migration of 75Se(Ⅳ) in crushed beishan granite:Effects of the iron content[J]. Journal of Hazardous Materials, 2016, 324:564-572.
    [25] MA B, NIE Z, LIU C L, et al. Kinetics of FeSe2 oxidation by ferric iron and its reactivity compared with FeS2[J]. Science China Chemistry, 2014, 57(9):1300-1309.
    [26] STAROSVETSKY D, KHASELEV O, AUINAT M, et al. Initiation of copper dissolution in sodium chloride electrolytes[J]. Electrochimica Acta, 2006, 51(26):5660-5668.
    [27] KOSEC T, QIN Z, CHEN J,et al. Copper corrosion in bentonite/saline groundwater solution:Effects of solution and bentonite chemistry[J]. Corrosion Science, 2015, 90:248-258.
    [28] HU B W, FENG Y, JIN C G, et al. The enhancement roles of layered double hydroxide on the reductive immobilization of selenate by nanoscale zero valent iron:Macroscopic and microscopic approaches[J]. Chemosphere, 2017, 184:408-416.
    [29] TOURNASSAT C, GRENECHE J M, TISSERAND D, et al. The titration of clay minerals:I. Discontinuous backtitration technique combined with CEC measurements[J]. Journal of Colloid & Interface Science, 2004, 273(1):224-233.
    [30] KULYUKHIN S A, KRASAVINA E P. Sorption of U(Ⅵ) onto layered double hydroxides and oxides of Mg and Al, prepared using microwave radiation[J]. Radiochemistry, 2016, 58(4):405-408.
  • 加载中
计量
  • 文章访问数:  1449
  • HTML全文浏览数:  1449
  • PDF下载数:  41
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-03-15

铜对硒(Ⅳ)在高庙子膨润土中吸附行为的影响

    通讯作者: 刘春立, E-mail: liucl@pku.edu.cn
  • 1. 北京分子科学国家研究中心, 放射化学与辐射化学重点学科实验室, 北京大学化学与分子工程学院, 北京, 100871;
  • 2. 兰州大学核科学与技术学院, 兰州, 730000
基金项目:

国家自然科学基金(U1530112,11475008,U1730245)资助.

摘要: 硒-79是高放废物(HLW)地质处置库安全评价中重点关注的放射性核素之一.在多重屏障体系中,高放废物外包装起到隔离放射性废物和地下水的作用.已有国家把铜作为废物包装容器的备选材料,如瑞典、芬兰等,而我国还未确定废物包装器材料.因此,研究不同价态的铜与硒(Ⅳ)的相互作用可为我国废物包装器材料选取提供支持.本文使用批式吸附实验法探究了不同价态的铜对硒(Ⅳ)在高庙子膨润土上吸附的影响,结果表明,在碱性条件下硒(Ⅳ)在膨润土上的吸附百分比小于20%,而引入CuCl2后,硒的吸附百分比可达100%.进一步研究发现,硒在铜(Ⅱ)的水解产物氯铜矿上有很强的吸附.膨润土可与氯铜矿发生相互作用,减弱硒(Ⅳ)在氯铜矿上的吸附,在c(Se)=10-4 mol·L-1,pH=6时,引入膨润土后硒的吸附百分比从97%降至70%.在酸性条件下低价态铜,如CuCl、Cu和Cu2O等可将硒(Ⅳ)还原到低价态(0,-I,-II),使得硒的吸附百分比从7.6%提高到90%以上,促进了硒的吸附.在含CuCl、Cu和Cu2O的3种体系中,硒在含CuCl的体系有最快的吸附速率.

English Abstract

参考文献 (30)

目录

/

返回文章
返回