基于分形插值模型的平寨水库水质评价

但雨生, 周忠发, 吴跃, 李韶慧, 陈全. 基于分形插值模型的平寨水库水质评价[J]. 环境化学, 2020, (4): 987-998. doi: 10.7524/j.issn.0254-6108.2019040701
引用本文: 但雨生, 周忠发, 吴跃, 李韶慧, 陈全. 基于分形插值模型的平寨水库水质评价[J]. 环境化学, 2020, (4): 987-998. doi: 10.7524/j.issn.0254-6108.2019040701
DAN Yusheng, ZHOU Zhongfa, WU Yue, LI Shaohui, CHEN Quan. Water quality assessment of Pingzhai Reservoir based on fractal interpolation model[J]. Environmental Chemistry, 2020, (4): 987-998. doi: 10.7524/j.issn.0254-6108.2019040701
Citation: DAN Yusheng, ZHOU Zhongfa, WU Yue, LI Shaohui, CHEN Quan. Water quality assessment of Pingzhai Reservoir based on fractal interpolation model[J]. Environmental Chemistry, 2020, (4): 987-998. doi: 10.7524/j.issn.0254-6108.2019040701

基于分形插值模型的平寨水库水质评价

    通讯作者: 周忠发, E-mail: fa6897@163.com
  • 基金项目:

    国家自然科学基金(U1612441,41661088),贵州省高层次创新型人才培养计划—"百"层次人才(黔科合平台人才〔2016〕5674)和贵州省科技计划(黔科合平台人才[2017]5726-57)资助.

Water quality assessment of Pingzhai Reservoir based on fractal interpolation model

    Corresponding author: ZHOU Zhongfa, fa6897@163.com
  • Fund Project: Supported by the National Natural Science Foundation of China(U1612441, 41661088),the Top Hundred Innovative Talents Cultivated Program(Guizhou S & T Platform Talents [2016]5674) and Guizhou Science and Technology Projects(Guizhou S & T Platform Talents [2017]5726-57).
  • 摘要: 平寨水库是黔中水利枢纽唯一源头水库,其水环境质量直接影响包括安顺和贵阳在内的整个黔中地区的农业灌溉和城市居民饮水安全.为了深入分析平寨水库的水环境质量状况,于2018年1月、5月、8月和11月对平寨水库7个监测断面水样进行采集,测定TP、TN、NH3-N、COD和DO等5个监测指标,基于分形维数权重建立水质评价模型,对平寨水库水环境质量状况进行综合评价,并与模糊综合评价法和综合污染指数法进行对比分析.结果表明,平寨水库TP、NH3-N和DO浓度均达到Ⅱ类水质标准,TN和COD浓度均超过Ⅱ类水质标准,主要为Ⅳ类和Ⅴ类,是主要污染因子;TP、NH3-N和COD浓度在春季最高,TN浓度在秋季最高,DO浓度在冬季最低.平寨水库全年水质类别主要为Ⅲ类和Ⅳ类,在28个监测序列中,水质达到水功能区划标准的仅21.43%;平寨和跨桥断面水质最差,扈家河断面水质相对最好;春、秋季水质最差,冬、夏季次之.分形插值模型不仅能评价水质状况,而且能对同等级水质状况的优劣进行排序,具有较高的分类精度;其评价结果更客观、有效,在水质综合评价中具有良好的适用性.
  • 加载中
  • [1] 林涛, 徐盼盼, 钱会, 等. 黄河宁夏段水质评价及其污染源分析[J]. 环境化学, 2017, 36(6):1388-1396.

    LIN T, XU P P, QIAN H, et al. Assessment of water quality and analysis of pollution source in Ningxia section of the Yellow River[J]. Environmental Chemistry, 2017, 36(6):1388-1396(in Chinese).

    [2] 者萌, 张雪芹, 孙瑞, 等. 西藏羊卓雍错流域水体水质评价及主要污染因子[J]. 湖泊科学, 2016, 28(2):287-294.

    ZHE M, ZHANG X Q, SUN R, et al. Assessment of water quality and the pollution factors of waters in Yamzhog Yumco Basin, Tibet[J]. Journal of Lake Sciences, 2016, 28(2):287-294(in Chinese).

    [3] 吴喜军, 董颖, 张亚宁. 改进的内梅罗污染指数法在黄河干流水质评价中的应用[J]. 节水灌溉, 2018, 278(10):51-53

    , 58. WU X J, DONG Y, ZHANG Y N. Application of improved nemerow pollution index method in water quality evaluation of Yellow River[J]. Water Saving Irrigation, 2018, 278(10):51-53, 58(in Chinese).

    [4] 郭晶, 王丑明, 黄代中, 等. 洞庭湖水污染特征及水质评价[J]. 环境化学, 2019, 38(1):152-160.

    GUO J, WANG C M, HUANG D Z, et al. Pollution characterization and water quality assessment of Dongting Lake[J]. Environmental Chemistry, 2019, 38(1):152-160(in Chinese).

    [5] 刘琰, 郑丙辉, 付青, 等. 水污染指数法在河流水质评价中的应用研究[J]. 中国环境监测, 2013, 29(3):49-55.

    LIU Y, ZHENG B H, FU Q, et al. Application of water pollution index in water quality assessment of rivers[J]. Environmental Monitoring in China, 2013, 29(3):49-55(in Chinese).

    [6] 谷建强, 张文, 朱凡, 等. 综合水质标识指数法在青山湖水质评价中的应用[J]. 浙江农林大学学报, 2016, 33(5):890-898.

    GU J Q, ZHANG W, ZHU F, et al.[J]. WQI for water quality evaluation in Qingshan Lake[J]. Journal of Zhejiang A & F University, 2016, 33(5):890-898(in Chinese).

    [7] 闫滨, 杨骁. 基于模糊综合评价法的大伙房水库上游水质评价及预测[J]. 南水北调与水利科技, 2015, 13(2):284-288

    , 381. YAN B, YANG X. Water quality evaluation and prediction of upstream of Dahuofang Reservoir in the Hunhe River based on the fuzzy comprehensive evaluation[J]. South-to-North Water Transfers and Water Science & Technology, 2015, 13(2):284-288, 381(in Chinese).

    [8] 侯玉婷, 周忠发, 王历, 等. 基于改进模糊综合评价法的喀斯特山区水质评价研究[J]. 水利水电技术, 2018, 49(7):129-135.

    HOU Y T, ZHOU Z F, WANG L, et al. Improved fuzzy comprehensive evaluation method-based study on water quality evaluation in karst mountain area[J]. Water Resources and Hydropower Engineering, 2018, 49(7):129-135(in Chinese).

    [9] 樊庆锌, 杨先兴, 邱微. 松花江哈尔滨段城市水环境质量评价[J]. 中国环境科学, 2014, 34(9):2292-2298.

    FAN Q X, YANG X X, QIU W. Study on water environmental quality in Harbin section of the Songhua River[J]. China Environmental Science, 2014, 34(9):2292-2298(in Chinese).

    [10] 花瑞祥, 张永勇, 刘威, 等. 不同评价方法对水库水质评价的适应性[J]. 南水北调与水利科技, 2016, 14(4):183-189.

    HUA R X, ZHANG Y Y, LIU W, et al. Adaptability analysis of multiple evaluation methods in reservoir water quality evaluation[J]. South-to-North Water Transfers and Water Science & Technology, 2016, 14(4):183-189(in Chinese).

    [11]
    [12] 夏凡, 胡圣, 龚治娟, 等. 不同水质评价方法的应用比较研究——以丹江口水库入库河流为例[J]. 人民长江, 2017, 48(17):11-15

    , 24. XIA F, HU S, GONG Z J, et al. Review on seeds floating and settling kinetic characteristics dispersed by hydrochory[J]. Yangtze River, 2017, 48(17):11-15, 24(in Chinese).

    [13] 石丽莉, 秦春燕. PSO-RBF耦合神经网络在水质评价中的应用[J]. 安全与环境学报, 2018, 18(1):353-356.

    SHI L L, QIN C Y. Application of hybrid PSO-RBF neural network in water quality evaluation[J]. Journal of Safety and Environment, 2018, 18(1):353-356(in Chinese).

    [14] 张颖, 高倩倩. 基于随机森林分类算法的巢湖水质评价[J]. 环境工程学报, 2016, 10(2):992-998.

    ZHANG Y, GAO Q Q. Water quality evaluation of Chaohu Lake based on random forest method[J]. Chinese Journal of Environmental Engineering, 2016, 10(2):992-998(in Chinese).

    [15] 刘捷, 邓超冰, 黄祖强, 等. 基于综合水质标识指数法的九洲江水质评价[J]. 广西科学, 2018, 25(4):400-408.

    LIU J, DENG C B, HUANG Z Q, et al. Application of comprehensive water quality identification index in water quality evaluation of Jiuzhoujiang River[J]. Guangxi Sciences, 2018, 25(4):400-408(in Chinese).

    [16] 尹海龙, 徐祖信. 河流综合水质评价方法比较研究[J]. 长江流域资源与环境, 2008, (5):729-733. YIN H L, XU Z X. Comparative study on typical river comprehensive water quality assessment methods[J]. Resources and Environment in the Yangtze Basin, 2008

    , (5):729-733(in Chinese).

    [17]
    [18] 李伟. 苕溪流域地表水水质综合评价与非点源污染模拟研究[D]. 杭州:浙江大学, 2013. LI W. The research on comprehensive evaluationof surface water quality and simulation of non-point source pollution within Tiaoxi watershed[D].Hangzhou:Zhejiang University, 2013(in Chinese).
    [19]
    [20] 杨咪, 屈文岗, 钱会. 基于熵权的贝叶斯模型及其在水质评价中的应用[J]. 灌溉排水学报, 2018, 37(1):85-90.

    YANG M, QU W G, QIAN H. Bayesian model based on entropyweight and its application inwater quality assessment[J]. Journal of Irrigation and Drainage, 2018, 37(1):85-90(in Chinese).

    [21] 王历, 周忠发, 侯玉婷, 等. 基于投影寻踪聚类模型的喀斯特地区水环境质量评价分析——以荔波县樟江为例[J]. 水利水电技术, 2018, 49(3):111-118.

    WANG L, ZHOU Z F, HOU Y T, et al. Projection pursuit clustering model-based assessment on water environment quality of karst area-A case study of Zhangjiang River in Libo County[J]. Water Resources and Hydropower Engineering, 2018, 49(3):111-118(in Chinese).

    [22] 龚艳冰, 刘高峰, 张继国, 等. 基于分形维数权重的南水北调东线源头水质评价研究[J]. 环境科学学报, 2014, 34(12):3194-3199.

    GONG Y B, LIU G F, ZHANG J G, et al. Water quality assessment of the east route of south-to-north water diversion based on fractal dimension weight[J]. Acta Scientiae Circumstantiae, 2014, 34(12):3194-3199(in Chinese).

    [23] 牛颖超, 周忠发, 王历, 等. 基于分形插值模型的贵州农产品区土壤养分综合评价研究[J]. 环境化学, 2018, 37(10):2207-2218.

    NIU Y C, ZHOU Z F, WANG L, et al. Comprehensive evaluation of soil nutrients in Guizhou agricultural products areas based on the fractal interpolation model[J]. Environmental Chemistry, 2018, 37(10):2207-2218(in Chinese).

    [24] 刘光萍, 杜萍, 王琨. 分形理论在湖泊富营养化评价中的应用[J]. 江西农业大学学报, 2005, 27(6):925-929.

    LIU G P, DU P, WANG K. Application of fractal theory to evaluation of lake eutrophication[J]. Acta Agriculturae Universitatis Jiangxiensis, 2005, 27(6):925-929(in Chinese).

    [25] 詹勇, 李畅游, 史小红, 等. 分形理论在乌梁素海湖泊水质评价中的应用[J]. 水资源与水工程学报, 2012, 23(2):37-39

    , 43. ZHAN Y, LI C Y, SHI X H, et al. Application of fractal theory to the evaluation of water quality in Wuliangsuhai Lake[J]. Journal of Water Resources & Water Engineering, 2012, 23(2):37-39, 43(in Chinese).

    [26] 武国正, 徐宗学, 李畅游. 基于分形理论的水体富营养状况评价及其验证[J]. 水资源保护, 2012, 28(4):12-16.

    WU G Z, XU Z X, LI C Y. Water eutrophication assessment and validation based on fractal theory[J]. Water Resources Protection, 2012, 28(4):12-16(in Chinese).

    [27] 胡云玲, 焦键, 刘江, 等. 分形理论在艾里克湖富营养化评价中的应用[J]. 新疆环境保护, 2015, 37(1):8-12

    , 17. HU Y L, JIAO J, LIU J, et al. Application of fractal theory on evaluation of water quality in Eric Lake[J]. Environmental Protection of Xinjiang, 2015, 37(1):8-12, 17(in Chinese).

    [28] 省人民政府关于贵州省水功能区划有关问题的批复[J].贵州省人民政府公报, 2015(4):45. Approval of the Provincial People's Government on the Water Function Zoning of Guizhou Province[J]. Gazette of Guizhou Provincial People's Government, 2015(4

    ):45(in Chinese).

    [29] 国家环保局本书编委会. 水和废水监测分析方法[M]. 北京:中国环境科学出版社, 1989. National Environmental Protection Bureau Book Editorial Committee. Water and exhausted water monitoring analysis method[M].Beijing:China Environmental Science Press, 1989(in Chinese).
    [30] MANDELBROT B. Fractals:Form, chance, and dimension[M]. New York:W. H. Freeman & Company. 1975.
    [31] 马健荣, 夏品华, 詹金星, 等. 贵州三水库冬季浮游生物分布及影响因子分析[J]. 中国环境监测, 2012, 28(5):57-63.

    MA J R, XIA P H, ZHAN J X, et al. The distribution of plankton and its regulating factors analysis in Three Reservoirs of Guizhou in winter[J]. Environmental Monitoring in China, 2012, 28(5):57-63(in Chinese).

  • 加载中
计量
  • 文章访问数:  1826
  • HTML全文浏览数:  1826
  • PDF下载数:  35
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-04-07

基于分形插值模型的平寨水库水质评价

    通讯作者: 周忠发, E-mail: fa6897@163.com
  • 1. 贵州师范大学喀斯特研究院/地理与环境科学学院, 贵阳, 550001;
  • 2. 贵州省喀斯特山地生态环境国家重点实验室培育基地, 贵阳, 550001
基金项目:

国家自然科学基金(U1612441,41661088),贵州省高层次创新型人才培养计划—"百"层次人才(黔科合平台人才〔2016〕5674)和贵州省科技计划(黔科合平台人才[2017]5726-57)资助.

摘要: 平寨水库是黔中水利枢纽唯一源头水库,其水环境质量直接影响包括安顺和贵阳在内的整个黔中地区的农业灌溉和城市居民饮水安全.为了深入分析平寨水库的水环境质量状况,于2018年1月、5月、8月和11月对平寨水库7个监测断面水样进行采集,测定TP、TN、NH3-N、COD和DO等5个监测指标,基于分形维数权重建立水质评价模型,对平寨水库水环境质量状况进行综合评价,并与模糊综合评价法和综合污染指数法进行对比分析.结果表明,平寨水库TP、NH3-N和DO浓度均达到Ⅱ类水质标准,TN和COD浓度均超过Ⅱ类水质标准,主要为Ⅳ类和Ⅴ类,是主要污染因子;TP、NH3-N和COD浓度在春季最高,TN浓度在秋季最高,DO浓度在冬季最低.平寨水库全年水质类别主要为Ⅲ类和Ⅳ类,在28个监测序列中,水质达到水功能区划标准的仅21.43%;平寨和跨桥断面水质最差,扈家河断面水质相对最好;春、秋季水质最差,冬、夏季次之.分形插值模型不仅能评价水质状况,而且能对同等级水质状况的优劣进行排序,具有较高的分类精度;其评价结果更客观、有效,在水质综合评价中具有良好的适用性.

English Abstract

参考文献 (31)

目录

/

返回文章
返回