稻米镉积累的影响因素与阻控措施

林欣颖, 谭祎, 历红波. 稻米镉积累的影响因素与阻控措施[J]. 环境化学, 2020, (6): 1530-1543. doi: 10.7524/j.issn.0254-6108.2019061301
引用本文: 林欣颖, 谭祎, 历红波. 稻米镉积累的影响因素与阻控措施[J]. 环境化学, 2020, (6): 1530-1543. doi: 10.7524/j.issn.0254-6108.2019061301
LIN Xinying, TAN Yi, LI Hongbo. A review on drivers and mitigation strategies for elevated cadmium concentration in rice[J]. Environmental Chemistry, 2020, (6): 1530-1543. doi: 10.7524/j.issn.0254-6108.2019061301
Citation: LIN Xinying, TAN Yi, LI Hongbo. A review on drivers and mitigation strategies for elevated cadmium concentration in rice[J]. Environmental Chemistry, 2020, (6): 1530-1543. doi: 10.7524/j.issn.0254-6108.2019061301

稻米镉积累的影响因素与阻控措施

    通讯作者: 历红波, E-mail: hongboli@nju.edu.cn
  • 基金项目:

    国家自然科学基金(21507057,41673101,21637002),江苏省自然科学基金(BK20150573)和国家重点研发计划项目(2016YFD0800807)资助.

A review on drivers and mitigation strategies for elevated cadmium concentration in rice

    Corresponding author: LI Hongbo, hongboli@nju.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21507057, 41673101, 21637002), Jiangsu Provincial Natural Science Foundation (BK20150573), and the National Key Research and Development Program of China (2016YFD0800807).
  • 摘要: 长期高镉暴露能引发"痛痛病"等疾病,镉的人体健康危害不容小视.目前我国镉污染较为严重,因其容易富集于水稻等粮食作物而备受当前环境、食品领域的关注.镉污染大米(也称为"镉米")摄入是目前人体镉暴露的最重要来源,探究"镉米"的形成及影响因素,并针对影响因素提出相应的阻控措施对保障食品安全和人体健康具有重要意义.本文针对土壤-水稻体系,简介了当前我国稻田镉污染现状,分析了土壤理化性质、全球变暖、水稻品种、水稻根系结构、水稻根系基因对水稻镉吸收的影响,总结了镉被吸收后在水稻植株内的分布和迁移过程及相关调控基因,探讨了土壤修复、基因调控、稻米加工、膳食摄入等措施降低大米镉含量及人体健康风险的效果.本文揭示了稻米镉积累的关键影响因素,并对今后"镉米"阻控措施的发展方向进行了展望.
  • 加载中
  • [1] 国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社, 2018. National Bureau of Statistics. China Statistics Yearbook[M]. Beijing:China Statistics Press, 2018(in Chinese).
    [2] 甄燕红, 成颜君, 潘根兴, 等. 中国部分市售大米中Cd、Zn、Se的含量及其食物安全评价[J]. 安全与环境学报, 2008(1):119-122. ZHEN Y H, CHENG Y J, PAN G X, et al. Cd, Zn and Se content of the polished rice samples from some Chinese open markets and their relevance to food safety[J]. Journal of Safety and Environment, 2008

    (1):119-122(in Chinese).

    [3] DU Y, HU X F, WU X H, et al. Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan Province, Central South China[J]. Environmental Monitoring & Assessment, 2013, 185(12):9843-9856.
    [4] ZHU H, CHEN C, XU C, et al. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China[J]. Environmental Pollution, 2016, 219:99-106.
    [5] LIU X, TIAN G, JIANG D, et al. Cadmium (Cd) distribution and contamination in Chinese paddy soils on national scale[J]. Environmental Science and Pollution Research, 2016, 23(18):17941-17952.
    [6] ZHANG X, CHEN D, ZHONG T, et al. Assessment of cadmium (Cd) concentration in arable soil in China[J]. Environmental Science and Pollution Research, 2015, 22(7):4932-4941.
    [7] ZHAO F J, MA Y, ZHU Y G, et al. Soil contamination in China:Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2):750-759.
    [8] 陈伟康. 硫肥对水稻根际中镉的生物有效性与微生物群落结构的影响[D]. 杭州:浙江大学, 2018. CHEN W K. Effect of sulfur fertilizer on the bioavailability of cadmium in rice rhizosphere and the characteristics of rhizosphere microbial community[D]. Hangzhou:Zhejiang University, 2018(in Chinese).
    [9] CHEN Y X, WANG Y P, LIN Q, et al. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens[J]. Environment International, 2005, 31:861-866.
    [10] AHMED H P, SCHOENAU J J, KING T, et al. Effects of seed-placed sulfur fertilizers on canola, wheat, and pea yield; sulfur uptake; and soil sulfate concentration over time in three prairie soils[J]. Journal of Plant Nutrition, 2017, 40:543-557.
    [11] 孙聪, 陈世宝, 宋文恩, 等. 不同品种水稻对土壤中镉的富集特征及敏感性分布(SSD)[J]. 中国农业科学, 2014, 47(12):2384-2394.

    SUN C, CHEN S B, SONG W E, et al. Accumulation characteristics of cadmium by rice cultivars in soils and its species sensitivity distribution[J]. Scientia Agricultura Sinica, 2014, 47(12):2384-2394(in Chinese).

    [12] 宋波, 曾炜铨. 土壤有机质对镉污染土壤修复的影响[J]. 土壤通报, 2015, 46(4):1018-1024.

    SONG B, ZENG W Q. Effects of organic matter on the remediation of cadmium-contaminated soil:A review[J]. Chinese Journal of Soil Science, 2015, 46(4):1018-1024(in Chinese).

    [13] HE T, MENG J, CHEN W, et al. Effects of biochar on cadmium accumulation in rice and cadmium fractions of soil:A three-year pot experiment[J]. BioResources, 2016, 12(1):622-642.
    [14] ZORNOZA R, FAZ A, CARMONA D M, et al. Plant cover and soil biochemical properties in a mine tailing pond five years after application of marble wastes and organic amendments[J]. Pedosphere, 2012, 22(1):22-32.
    [15] 宗良纲, 徐晓炎. 水稻对土壤中镉的吸收及其调控措施[J]. 生态学杂志, 2004,23(3):120-123.

    ZONG L G, XU X Y. Cadmium absorption of rice from soils and remediations[J]. Chinese Journal of Ecology, 2004,23(3):120-123(in Chinese).

    [16] LI T Q, DI Z Z, YANG X E, et al. Effects of dissolved organic matter from the rhizosphere of the hyperaccumulator Sedum alfredii on sorption of zinc and cadmium by different soils[J]. Journal of Hazardous Materials, 2011, 192(3):1616-1622.
    [17] PINTO A P, MOTA A M, DE V A, et al. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants[J]. Science of the Total Environment, 2004, 326(1-3):239-247.
    [18] 丁疆华, 温琰茂, 舒强. 土壤环境中镉、锌形态转化的探讨[J]. 城市环境与城市生态, 2001, 14(2):47-49.

    DING J H, WEN Y M, SHU Q. Fraction transformation of cadmium and zinc in soils[J]. Urban Environment and Urban Ecology, 2001, 14(2):47-49(in Chinese).

    [19] 刘文菊, 张西科, 尹君, 等. 镉在水稻根际的生物有效性[J]. 农业环境保护, 2000, 19(3):47-49.

    LIU W J, ZHANG X K, YIN J, et al. Cadmium bioavailability in rhizosphere of paddy soil[J]. Agro-environmental Protection, 2000, 19(3):47-49(in Chinese).

    [20] CHANEY R L, WHITE M C, SIMON P W. Plant uptake of heavy metals from sludge use on land[A]. In:Proc. 2nd Natl. Conf. on Management of Municipal Wastewater Sludges[C]. Silver Spring, MD:Information Transfer Inc., 1975, 169-178.
    [21] TAKIJIMA Y, KATSUMI F, TAKEZAWA K. Cadmium contamination of soils and rice plants caused by zinc mining, Ⅱ. Soil conditions of contaminated paddy fields which influence heavy metal contents in rice[J]. Soil Science and Plant Nutrition, 1973, 19(3):173-182.
    [22] 陈光辉, 周森林, 易亚科, 等. 不同生育期脱水对稻米镉含量的影响[J]. 中国农学通报, 2018, 34(3):1-5.

    CHEN G H, ZHOU S L. YI Y K, et al. Effects of drought stress in different growth stages on grain cadmium content of rice[J]. Chinese Agricultural Science Bulletin, 2018, 34(3):1-5(in Chinese).

    [23] 纪雄辉, 梁永超, 鲁艳红, 等. 污染稻田水分管理对水稻吸收积累镉的影响及其作用机理[J]. 生态学报, 2007, 27(9):3930-3939.

    JI X H, LANG Y C, LU Y H, et al. The effect of water management on the mechanism and rate of uptake and accumulation of cadmium by rice growing in polluted paddy soil[J]. Acta Ecologica Sinica, 2007, 27(9):3930-3939(in Chinese).

    [24] 杨定清, 雷绍荣, 李霞, 等. 大田水分管理对控制稻米镉含量的技术研究[J]. 中国农学通报, 2016, 32(18):11-16.

    YANG D Q, LEI S R, LI X, et al. Controlling cadmium concentration in rice by field water management technology[J]. Chinese Agricultural Science Bulletin, 2016, 32(18):11-16(in Chinese).

    [25] 张雪霞, 张晓霞, 郑煜基, 等. 水分管理对硫铁镉在水稻根区变化规律及其在水稻中积累的影响[J]. 环境科学, 2013, 34(7):2837-2846.

    ZHANG X X, ZHANG X X, ZHENG Y J, et al. Accumulation of S, Fe and Cd in rhizosphere of rice and their uptake in rice with different water managements[J]. Environmental Science, 2013, 34(7):2837-2846(in Chinese).

    [26] GE L Q, CANG L, ATA-UL-KARIM S T, et al. Effects of various warming patterns on Cd transfer in soil-rice systems under free air temperature increase (FATI) conditions[J]. Ecotoxicology and Environmental Safety, 2019, 168:80-87.
    [27] 詹杰, 魏树和, 牛荣成. 我国稻田土壤镉污染现状及安全生产新措施[J]. 农业环境科学学报, 2012, 31(7):1257-1263.

    ZHAN J, WEI S H, NIU R C. Advances of cadmium contaminated paddy soil research and new measure of its safe production in China:a review[J]. Journal of Agro-Environment Science, 2012, 31(7):1257-1263(in Chinese).

    [28] 周静, 杨洋, 孟桂元, 等. 不同镉污染土壤下水稻镉富集与转运效率[J]. 生态学杂志, 2018, 37(1):89-94.

    ZHOU J, YANG Y, MENG G Y, et al. Cadmium accumulation and translocation efficiency of rice under different cadmium-polluted soils[J]. Chinese Journal of Ecology, 2018, 37(1):89-94(in Chinese).

    [29] 李正文, 张艳玲, 潘根兴, 等. 不同水稻品种籽粒Cd、Cu和Se的含量差异及其人类膳食摄取风险[J]. 环境科学, 2003, 24(3):112-115.

    LI Z W, ZHANG Y L, PAN G X, et al. Grain contents of Cd, Cu and Se by 57 rice cultivars and the risk significance for human dietary uptake[J]. Environmental Science, 2003, 24(3):112-115(in Chinese).

    [30] 刘建国. 水稻品种对土壤重金属镉铅吸收分配的差异及其机理研究[D]. 扬州:扬州大学, 2004. LIU J G. Variation among rice cultivars in the uptake and translocation of cadmium and lead from soil, and the mechanisms[D]. Yangzhou:Yangzhou University, 2004(in Chinese).
    [31] 杨祥田, 周翠, 何贤彪, 等. 田间试验条件下不同基因型水稻对Cd和Pb的吸收分配特征[J]. 农业环境科学学报, 2013, 32(3):438-444.

    YANG X T, ZHOU C, HE X B, et al. Uptake and partition of Cd and Pb among rice genotypes in contaminated paddy soil[J]. Journal of Agro-Environment Science, 2013, 32(3):438-444(in Chinese).

    [32] 李军, 梁吉哲, 刘侯俊, 等. Cd对不同品种水稻微量元素累积特性及其相关性的影响[J]. 农业环境科学学报, 2012, 31(3):441-447.

    LI J, LIANG J Z, LIU H J, et al. Influence of Cd on microelements accumulation and their correlation in different rice cultivars of Northeastern China[J]. Journal of Agro-Environment Science, 2012, 31(3):441-447(in Chinese).

    [33] 刘利成, 刘三雄, 黎用朝, 等. 水稻镉积累与调控研究进展[J]. 中国农学通报, 2016, 32(24):1-5.

    LIU L C, LIU S X, LI Y C, et al. Research progress of cadmium accumulation and regulation in rice[J]. Chinese Agricultural Science Bulletin, 2016, 32(24):1-5(in Chinese).

    [34] 吴启堂, 陈卢, 王广寿. 水稻不同品种对Cd吸收累积的差异和机理研究[J]. 生态学报, 1999, 19(1):104-107.

    WU Q T, CHEN L, WANG G S. Differences on Cd uptake and accumulation among rice cultivars and its mechanism[J]. Acta Ecologica Sinica, 1999, 19(1):104-107(in Chinese).

    [35] LI Y, PANG H D, HE L Y, et al. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa Wuyun23) in the presence of heavy metal-resistant bacteria[J]. Ecotoxicology and Environmental Safety, 2017, 138:56-63.
    [36] LIU B, CHEN L, CHEN S B, et al. Subcellular Cd accumulation characteristic in root cell wall of rice cultivars with different sensitivities to Cd stress in soil[J]. Journal of Integrative Agriculture, 2016, 15:2114-2122.
    [37] MOORE C A, BOWEN H C, SCRASE-FIELD S, et al. The deposition of suberin lamellae determines the magnitude of cytosolic Ca2+ elevations in root endodermal cells subjected to cooling[J]. Plant Journal:For Cell and Molecular Biology, 2002, 30(4):457-465.
    [38] WHITE P J. The pathways of calcium movement to the xylem[J]. Journal of Experimental Botany, 2001, 52:891-899.
    [39] HUANG L, LI W C. Effects of root morphology and anatomy on cadmium uptake and translocation in rice (Oryza sativa L.)[J]. Journal of Environmental Sciences, 2019, 75(1):296-306.
    [40] MEI X Q, YE Z H, WONG M H. The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw[J]. Environmental Pollution, 2009, 157:250-255.
    [41] WANG M Y, CHEN A K, WONG M H, et al. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss[J]. Environmental Pollution, 2009, 159:1730-1736.
    [42] 朱智伟, 陈铭学, 牟仁祥, 等. 水稻镉代谢与控制研究进展[J]. 中国农业科学, 2014, 47(18):3633-3640.

    ZHU Z W, CHEN M X, MOU R X, et al. Advances in research of cadmium metabolism and control in rice plants[J]. Scientia Agricultura Sinica, 2014, 47(18):3633-3640(in Chinese).

    [43] 杨肖娥, 龙新宪, 倪吾钟. 超积累植物吸收重金属的生理及分子机制[J]. 植物营养与肥料学报, 2002, 8(1):8-15.

    YANG X E, LONG X X, NI W Z. Physiological and molecular mechanisms of heavy metal uptake by hyperaccumulting plants[J]. Journal of Plant Nutrition and Fertilizers, 2002, 8(1):8-15(in Chinese).

    [44] URAGUCHI S, FUJIWARA T. Cadmium transport and tolerance in rice:Perspectives for reducing grain cadmium accumulation[J]. Rice, 2012, 5:5.
    [45] HE L, GIRIJASHANKER K, DALTON K P, et al. ZIP8, member of the solute-carrier-39(SLC39) metal-transporter family:Characterization of transporter properties[J]. Molecular Pharmacology, 2016, 70:171-180.
    [46] HIMENO S, YANAGIYA T, FUJISHIRO H. The role of zinc transporters in cadmium and manganese transport in mammalian cells[J]. Biochimie, 2016, 91(10):1218-1222.
    [47] CONNOLLY E L, FETT J P, GUERINOT M L. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation[J]. Plant Cell, 2002,14(6):1347-1357.
    [48] VERT G, GROTZ N, DEDALDECHAMP F, et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth[J]. Plant Cell, 2002, 14(6):1223-1233.
    [49] ISHIMARU Y, SUZUKI M, TSUKAMOTO T, et al. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+[J]. Plant Journal, 2006, 45(3):335-346.
    [50] NAKANISHI H, OGAWA I, ISHIMARU Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice[J]. Soil Science & Plant Nutrition, 2006, 52(4):464-469.
    [51] LEE S, AN G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice[J]. Plant Cell & Environment, 2009, 32(4):408-416.
    [52] COLANGELO E P, GUERINOT M L. Put the metal to the petal:Metal uptake and transport throughout plants[J]. Current Opinion in Plant Biology, 2006, 9(3):322-330.
    [53] NEVO Y, NELSON N. The NRAMP family of metal-ion transporters[J]. Biochimica Et Biophysica Acta Molecular Cell Research, 2006, 1763(7):609-620.
    [54] XIA J, YAMAJI N, KASAI T, et al. Plasma membrane-localized transporter for aluminum in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(43):18381-18385.
    [55] AKIMASA S, NAOKI Y, KENGO Y. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 24(5):2155-2167.
    [56] TAKAHASHI R, ISHIMARU Y, SENOURA T, et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice[J]. Journal of Experimental Botany, 2011, 62(14):4843-4850.
    [57] NOCITO F F, LANCILLI C, DENDENA B, et al. Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation[J]. Plant, Cell and Environment, 2016, 4(6):994-1008.
    [58] 周静, 杨洋, 孟桂元, 等. 不同镉污染土壤下水稻镉富集与转运效率[J]. 生态学杂志, 2018, 37(1):89-94.

    ZHOU J, YANG Y, MENG G Y, et al. Cadmium accumulation and translocation efficiency of rice under different cadmium-polluted soils[J]. Chinese Journal of Ecology, 2018, 37(1):89-94(in Chinese).

    [59] 赵雄, 李福燕, 张冬明, 等. 水稻土镉污染与水稻镉含量相关性研究[J]. 农业环境科学学报, 2009, 28(11):2236-2240.

    ZHAO X, LI F Y, ZHANG D M, et al. Relationship between paddy soils cadmium pollution and cadmium content in rice[J]. Journal of Agro-Environment Science, 2009, 28(11):2236-2240(in Chinese).

    [60] 张锡洲, 张洪江, 李廷轩, 等. 水稻镉耐性差异及镉低积累种质资源的筛选[J]. 中国生态农业学报, 2013, 21(11):1434-1440.

    ZHANG X Z, ZHANG H J, LI T X, et al. Differences in Cd-tolerance of rice and screening for Cd low-accumulation rice germplasm resource[J]. Chinese Journal of Eco-Agriculture, 2013, 21(11):1434-1440(in Chinese).

    [61] SHI X, ZHANG C, WANG H, et al. Effect of Si on the distribution of Cd in rice seeding[J]. Plant and Soil, 2005, 272(1-2):53-60.
    [62] 文志琦, 赵艳玲, 崔冠男, 等. 水稻营养器官镉积累特性对稻米镉含量的影响[J]. 植物生理学报,2015,51(8):1280-1286.

    WEN Z Q, ZHAO Y L, CUI G N, et al. Effects of cadmium accumulation characteristics in vegetative organs on cadmium content in grains of rice[J]. Plant Physiology Journal, 2015,51(8):1280-1286(in Chinese).

    [63] 赵步洪,张洪熙,奚岭林,等.杂交水稻不同器官镉浓度与累积量[J].中国水稻科学, 2006, 20(3):306-312.

    ZHAO B H, ZHANG H X, XI L L, et al. Concentrations and accumulation of cadmium in different organs of hybrid rice[J]. Chinese Journal of Rice Science, 2006, 20(3):306-312(in Chinese).

    [64] 查燕, 杨居荣, 刘虹, 等. 污染稻麦籽实中镉和铅的分布及其存在形态[J]. 北京师范大学学报:自然科学版, 2000, 36(2):268-273.

    ZHA Y, YANG J R, LIU H, et al. Distribution and existing forms of cadmium and lead in polluted seeds of rice and wheat[J]. Journal of Beijing Normal University (Natural Science), 2000, 36(2):268-273(in Chinese).

    [65] 喻华, 上官宇先, 涂仕华, 等. 水稻籽粒中镉的来源[J]. 中国农业科学, 2018, 51(10):1940-1947.

    YU H, SHANGGUAN Y X, TU S H, et al. Sources of cadmium accumulated in rice grain[J]. Scientia Agricultura Sinica, 2018, 51(10):1940-1947(in Chinese).

    [66] FUJIMAKI S, SUZUI N, ISHIOKA N S, et al. Tracing cadmium from culture to spikelet:Noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant[J]. Plant Physiology, 2010, 152(4):1796-1806.
    [67] TANAKA K, FUJIMAKI S, FUJIWARA T, et al. Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.)[J]. Soil Science & Plant Nutrition, 2007, 53(1):72-77.
    [68] FENG X M, HAN L, CHAO D Y, et al. Ionomic and transcriptomic analysis provides new insight into the distribution and transport of cadmium and arsenic in rice[J]. Journal of Hazardous Materials, 2017, 331:246-256.
    [69] 李正翔. 不同基因型水稻剑叶中镉向籽粒再分配差异性研究[D]. 北京:中国农业科学院, 2014. LI Z X. Effects of cultivar on cadmium redistributed from blade leaf to grains[D]. Beijing:Chinese Academy of Agricultural Sciences, 2014(in Chinese).
    [70] RODDA M, LI G, REID R. The timing of grain Cd accumulation in rice plants:The relative importance of remobilization within the plant and root Cd uptake post-flowering[J]. Plant Soil, 2011, 347:105-114.
    [71] KATO M, ISHIKAWA S, INAGAKI K, et al. Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.)[J]. Soil Science & Plant Nutrition, 2010, 56(6):839-847.
    [72] KASHIWAGI T, SHINDOH K, HIROTSU N, et al. Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant in rice[J]. BMC Plant Biology, 2009, 9:8.
    [73] MIYADATE H, ADACHI S, HIRAIZUMI A, et al. OsHMA3, a P1B-type of ATPase affects root-to shoot cadmium translocation in rice by mediating efflux into vacuoles[J]. New Phytologist, 2011, 189(1):190-199.
    [74] LUO J S, HUANG J, ZENG D L, et al. A defensin-like protein drives cadmium efflux and allocation in rice[J]. Nature Communications, 2018, 9:645.
    [75] URAGUCHI S, KAMIYA T, SAKAMOTO T, et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52):20959-20964.
    [76] CLEMENS S, ANTOSIEWICZ D M, WARD J M, et al. The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(20):12043-12048.
    [77] 邹明英, 苑蓉, 张宇, 等. 不同土地利用方式下土壤重金属污染修复技术研究[J]. 环境科学与管理, 2015, 40(2):160-163.

    ZOU M Y, YUAN Y, ZHANG Y, et al. Remediation techniques for heavy metal polluted soils under different land use patterns[J]. Environment Science and Management, 2015, 40(2):160-163(in Chinese).

    [78] 张海欧, 韩霁昌, 王欢元, 等. 污染土地修复工程技术及发展趋势[J]. 中国农学通报, 2016, 32(26):103-108.

    ZHANG H O, HAN J C, WANG H Y, et al. Engineering technology and development trend of polluted land restoration[J]. Chinese Agricultural Science Bulletin, 2016, 32(26):103-108(in Chinese).

    [79] 吴燕玉, 陈涛, 孔庆新, 等. 张士灌区镉污染及其改良途径[J]. 环境科学学报, 1984,4(3):275-283.

    WU Y Y, CHEN T, KONG Q X, et al. Cadmium contamination of Zhangshi irrigation area and ways of improving[J]. Acta Scientiae Circumstantiae,1984,4(3):275-283(in Chinese).

    [80] TANG X, LI Q, WANG Z, et al. Improved isolation of cadmium from paddy soil by novel technology based on pore water drainage with graphite-contained electro-kinetic geosynthetics[J]. Environmental Science and Pollution Research, 2018, 25(14):14244-14253.
    [81] WANG H Y, WEN S L, CHEN P, et al. Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields[J]. Environmental Science and Pollution Research, 2015, 23(4):3781-3788.
    [82] CURIE C, BRIAT J F. Iron transport and signaling in plants[J]. Annual Review of Plant Biology, 2003, 54:183-206.
    [83] SCHMIDT W. Iron solutions:Acquisition strategies and signaling pathways in plants[J]. Trends in Plant Science, 2002, 8(4):188-193.
    [84] CURIE C, ALONSO J M, LE J, et al. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport[J]. Biochemical Journal, 2000, 347:749-755.
    [85]
    [86] DUAN M M, WANG S, HUANG D Y, et al. Effectiveness of simultaneous applications of lime and zinc/iron foliar sprays to minimize cadmium accumulation in rice[J]. Ecotoxicology and Environmental Safety, 2018, 165:510-515.
    [87] YANG Y J, CHEN J M, HUANG Q N, et al. Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils[J]. Chemosphere, 2018, 193:547-556.
    [88] MALIK J A, GOEL S, KAUR N, et al. Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms[J]. Environmental & Experimental Botany, 2012, 77:242-248.
    [89] WANG X, TAM N F, FU S, et al. Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa)[J]. Annals of Botany, 2014, 114:271-278.
    [90] HU Y, GARETH J N, DUAN G L, et al. Effect of selenium fertilization on the accumulation of cadmium and lead in rice plants[J]. Plant Soil, 2014, 384:131-140.
    [91] WAN Y N, CAMARA A Y, YU Y, et al. Cadmium dynamics in soil pore water and uptake by rice:Influences of soil-applied selenite with different water managements[J]. Environmental Pollution, 2018, 240:523-533.
    [92] LONG X X, YANG X E, YE Z Q, et al. Differences of uptake and accumulation of zinc in four species of Sedum[J]. Acta Botanica Sinica, 2002, 44(2):152-157.
    [93]
    [94] YE H B, YANG X E, et al. Growth response and metal accumulation of Sedum alfredii to Cd/Zn complex-polluted ion levels[J]. Acta Botanica Sinica, 2003, 45(9):1030-1036.
    [95] 梁俊. 东南景天镉解毒相关代谢过程及关键基因克隆[D]. 杭州:浙江大学, 2017. LIANG J. Metabolic process related to cadmium detoxification and key gene cloning of Sedum alfredii[D]. Hangzhou:Zhejiang University, 2017(in Chinese).
    [96] 高晓宇. 锌镉超积累植物东南景天SaPCR1SaPCR2基因的克隆及功能分析[D]. 杭州:浙江大学, 2018. GAO X Y. Cloning and functional analysis of SaPCR1 and SaPCR2 from Zn/Cd hyperaccumulator Sedum alfredii[D]. Hangzhou:Zhejiang University, 2018

    (in Chinese).

    [97] 刘沙沙, 李兵, 冯翔, 等. 3种植物对镉污染土壤修复的试验研究[J]. 中国农学通报, 2018, 34(22):103-108.

    LIU S S, LI B, FENG X, et al. Three kinds of plants:remediation on soil contaminated by cadmium[J]. Chinese Agricultural Science Bulletin, 2018, 34(22):103-108(in Chinese).

    [98] 刘家女, 周启星, 孙挺, 等. 花卉植物应用于污染土壤修复的可行性研究[J]. 应用生态学报, 2007,18(7):1617-1623.

    LIU J N, ZHOU Q X, SUN T, et al, Feasibility of applying ornamental plants in contaminated soil remediation[J]. Chinese Journal of Applied Ecology, 2007,18(7):1617-1623(in Chinese).

    [99] 殷永超, 吉普辉, 宋雪英, 等. 龙葵(Solanum nigrum L.)野外场地规模Cd污染土壤修复试验[J]. 生态学杂志, 2014, 33(11):3060-3067.

    YIN Y C, JI P H, SONG X Y, et al. Field experiment on phytoremediation of cadmium contaminated soils using Solanum nigrum L[J]. Chinese Journal of Ecology, 2014, 33(11):3060-3067(in Chinese).

    [100] ISHIKAWA S, ABE T, KURAMATA M, et al. A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7[J]. Journal of Experimental Botany, 2010, 61(3):923-934.
    [101] ISHIMARU Y, TAKAHASHI R, BASHIR K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific Reports, 2012, 2:286.
    [102] TANG L, MAO B, LI Y, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017, 7:14438.
    [103] LU C N, ZHANG L X, TANG Z, et al. Producing cadmium-free Indica rice by overexpressing OsHMA3[J]. Environmental International, 2019, 126:619-626.
    [104] SUZUKI K T, SASAKURA C, OHMICHI M. Binding of endogenous and exogenous cadmium to glutelin in rice grains as studied by HPLC/ICP-MS with use of a stable isotope[J]. Journal of Trace Elements in Medicine and Biology, 1997, 11:71-76.
    [105] 杨居荣, 何孟常, 查燕, 等. 稻麦籽实中Cd的结合形态[J]. 中国环境科学, 2000, 20(5):404-408.

    YANG J R, HE M C, ZHA Y, et al. Binding forms of Cd in the rice and wheat seeds[J]. China Environmental Science, 2000, 20(5):404-408(in Chinese).

    [106] 魏帅, 田阳, 郭波莉, 等. 稻谷加工工艺对产品镉含量的影响[J]. 中国食品学报, 2015, 15(3):146-150.

    WEI S, TIAN Y, GUO B L, et al. Effect of hulling and milling process on cadmium concentration in rice product[J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(3):146-150(in Chinese).

    [107] ZHAO D, ALBERT L J, LUO J, et al. Mineral dietary supplement to decrease cadmium relative bioavailability in rice based on a mouse bioassay[J]. Environmental Science & Technology, 2017, 51(21):12123-12130.
    [108] LIN Y S, CAFFREY J L, LIN J W, et al. Increased risk of cancer mortality associated with cadmium exposures in older Americans with low zinc intake[J]. Journal of Toxicology & Environmental Health, Part A, 2013, 76:1-15.
    [109] REEVES P G, CHANEY R L. Bioavailability as an issue in risk assessment and management of food cadmium:A review[J]. Science of the Total Environment, 2008, 398:13-19.
  • 加载中
计量
  • 文章访问数:  3652
  • HTML全文浏览数:  3652
  • PDF下载数:  86
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-13
林欣颖, 谭祎, 历红波. 稻米镉积累的影响因素与阻控措施[J]. 环境化学, 2020, (6): 1530-1543. doi: 10.7524/j.issn.0254-6108.2019061301
引用本文: 林欣颖, 谭祎, 历红波. 稻米镉积累的影响因素与阻控措施[J]. 环境化学, 2020, (6): 1530-1543. doi: 10.7524/j.issn.0254-6108.2019061301
LIN Xinying, TAN Yi, LI Hongbo. A review on drivers and mitigation strategies for elevated cadmium concentration in rice[J]. Environmental Chemistry, 2020, (6): 1530-1543. doi: 10.7524/j.issn.0254-6108.2019061301
Citation: LIN Xinying, TAN Yi, LI Hongbo. A review on drivers and mitigation strategies for elevated cadmium concentration in rice[J]. Environmental Chemistry, 2020, (6): 1530-1543. doi: 10.7524/j.issn.0254-6108.2019061301

稻米镉积累的影响因素与阻控措施

    通讯作者: 历红波, E-mail: hongboli@nju.edu.cn
  • 南京大学环境学院, 南京, 210023
基金项目:

国家自然科学基金(21507057,41673101,21637002),江苏省自然科学基金(BK20150573)和国家重点研发计划项目(2016YFD0800807)资助.

摘要: 长期高镉暴露能引发"痛痛病"等疾病,镉的人体健康危害不容小视.目前我国镉污染较为严重,因其容易富集于水稻等粮食作物而备受当前环境、食品领域的关注.镉污染大米(也称为"镉米")摄入是目前人体镉暴露的最重要来源,探究"镉米"的形成及影响因素,并针对影响因素提出相应的阻控措施对保障食品安全和人体健康具有重要意义.本文针对土壤-水稻体系,简介了当前我国稻田镉污染现状,分析了土壤理化性质、全球变暖、水稻品种、水稻根系结构、水稻根系基因对水稻镉吸收的影响,总结了镉被吸收后在水稻植株内的分布和迁移过程及相关调控基因,探讨了土壤修复、基因调控、稻米加工、膳食摄入等措施降低大米镉含量及人体健康风险的效果.本文揭示了稻米镉积累的关键影响因素,并对今后"镉米"阻控措施的发展方向进行了展望.

English Abstract

参考文献 (109)

返回顶部

目录

/

返回文章
返回