东平湖沉积物-菹草系统碳、氮、磷空间分布及化学计量特征

张智博, 刘涛, 曹起孟, 张菊, 邓焕广. 东平湖沉积物-菹草系统碳、氮、磷空间分布及化学计量特征[J]. 环境化学, 2020, (8): 2263-2271. doi: 10.7524/j.issn.0254-6108.2019061401
引用本文: 张智博, 刘涛, 曹起孟, 张菊, 邓焕广. 东平湖沉积物-菹草系统碳、氮、磷空间分布及化学计量特征[J]. 环境化学, 2020, (8): 2263-2271. doi: 10.7524/j.issn.0254-6108.2019061401
ZHANG Zhibo, LIU Tao, CAO Qimeng, ZHANG Ju, DENG Huanguang. Spatial distribution and stoichiometric characteristics of C, N, P in the sediment-Potamogeton crispus system in Dongping Lake[J]. Environmental Chemistry, 2020, (8): 2263-2271. doi: 10.7524/j.issn.0254-6108.2019061401
Citation: ZHANG Zhibo, LIU Tao, CAO Qimeng, ZHANG Ju, DENG Huanguang. Spatial distribution and stoichiometric characteristics of C, N, P in the sediment-Potamogeton crispus system in Dongping Lake[J]. Environmental Chemistry, 2020, (8): 2263-2271. doi: 10.7524/j.issn.0254-6108.2019061401

东平湖沉积物-菹草系统碳、氮、磷空间分布及化学计量特征

    通讯作者: 邓焕广, E-mail: lcdhg@lcu.edu.cn
  • 基金项目:

    国家自然科学基金(41401563),山东省自然科学基金(ZR2014JL028)和聊城大学科研启动基金(318051748)资助.

Spatial distribution and stoichiometric characteristics of C, N, P in the sediment-Potamogeton crispus system in Dongping Lake

    Corresponding author: DENG Huanguang, lcdhg@lcu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(41401563),the National Natural Science Foundation of Shandong Province (ZR2014JL028) and Liaocheng University Research Startup Fund Project (318051748).
  • 摘要: 为阐明东平湖沉积物-菹草生态系统营养元素的生态化学计量学特征及其指示意义,于2015年7月在全湖设置33个采样点,采集表层(0-5 cm)沉积物及菹草样品,分别对沉积物和菹草中TC、TN和TP含量进行测定与分析,探讨其空间分布及其生态化学计量学特征.结果表明,东平湖沉积物TC、TN和TP含量平均值分别为35.11 g·kg-1、1.98 g·kg-1和0.70 g·kg-1;菹草TC、TN和TP含量平均值分别为36.99 g·kg-1、2.22 g·kg-1和6.95 g·kg-1;沉积物TC、TN、TP和菹草TN、TP含量在空间分布上具有相似的特征,均表现为北湖区最高;沉积物TC、TN和TP两两之间均具有极显著正相关关系(P<0.01),表明沉积物中C、N、P具有同源性;生态化学计量学特征表明,沉积物中有机物质以外源输入为主,有机质分解不受氮元素的限制,而菹草生长则主要受氮元素限制.
  • 加载中
  • [1] 贺合亮, 阳小成, 王东, 等. 青藏高原东部窄叶鲜卑花灌丛土壤C、N、P生态化学计量学特征[J]. 应用与环境生物学报, 2015, 21(6):1128-1135.

    HE H L, YANG X C, WANG D, et al. Ecological stoichiometric characteristics of soil carbon, nitrogen and phosphorus of Sibiraea angustata shrub in eastern Qinghai-Tibetan Plateau[J]. Chinese Journal of Applied & Environmental Biology, 2015, 21(6):1128-1135(in Chinese).

    [2] 刘兴诏, 周国逸, 张德强, 等. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征[J]. 植物生态学报, 2010, 34(1):64-71.

    LIU X S, ZHOU G Y, ZHANG D Q, et al. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China[J]. Chinese Journal of Plant Ecology, 2010, 34(1):64-71(in Chinese).

    [3] BARKO J W, GUNNISON D, CARPENTER S R. Sediment interactions with submersed macrophyte growth and community dynamics[J]. Aquatic Botany, 1991, 41(1-3):41-65.
    [4] MCGRODDY M E, DAUFRESNE T, HEDIN L O. Scaling of C:N:P stoichiometry in forests worldwide:Implications of terrestrial Redfield-type ratios[J]. Ecology, 2004, 85(9):2390-2401.
    [5] KANG H Z, ZHUANG H L, WU L L, et al. Variation in leaf nitrogen and phosphorus stoichiometry in Picea abies across Europe:An analysis based on local observations[J]. Forest Ecology and Management, 2011, 261(2):195-202.
    [6] CLEVELAND C C, LIPTZIN D. C:N:P stoichiometry in soil:Is there a "Redfield Ratio" for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3):235-252.
    [7] 王维奇, 曾从盛, 钟春棋, 等. 人类干扰对闽江河口湿地土壤碳、氮、磷生态化学计量学特征的影响[J]. 环境科学, 2010, 31(10):2411-2416.

    WANG W Q, ZENG C S, ZHONG C Q, et al. Effect of human disturbance on ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in Minjiang River Estuarine wetland[J]. Environmental Science, 2010, 31(10):2411-2416(in Chinese).

    [8] 程先, 孙然好, 孔佩儒, 等. 海河流域水体沉积物碳、氮、磷分布与污染评价[J]. 应用生态学报, 2016, 27(8):2679-2686.

    CHENG X, SUN R H, KONG P R, et al. Spatial distribution characteristics of carbon, nitrogen and phosphorous and pollution status evaluation of sediments in the Haihe River Basin, China[J]. Chinese Journal of Applied Ecology, 2016, 27(8):2679-2686(in Chinese).

    [9] 杨文焕, 崔亚楠, 李卫平, 等. 冰封期湿地沉积物碳、氮、磷分布及污染评价[J]. 环境化学, 2018, 37(2):287-295.

    YANG W H, CUI Y N, LI W P, et al. Distribution and pollution evaluation of carbon, nitrogen and phosphorus in sediments of lake Nanhai in Baotou City[J]. Environmental Chemistry, 2018, 37(2):287-295(in Chinese).

    [10] 闫玉琴, 解刚, 项宇, 等. 毛乌素沙地湖滨带沉积物碳氮磷生态化学计量学特征[J]. 水土保持学报, 2018, 32(2):223-228.

    YAN Y Q, XIE G, XIANG Y, et al. Spatial distribution and ecological stoichiometry characteristics of carbon,nitrogen and phosphorus in lake littoral zone sediment in Mu Us Sandland[J]. Journal of Soil & Water Conservation, 2018, 32(2):223-228(in Chinese).

    [11] 苏豪杰, 吴耀, 夏午来, 等. 长江中下游湖泊群落水平下沉水植物碳、氮、磷化学计量特征及其影响因素[J]. 湖泊科学, 2017, 29(2):430-438.

    SU H J, WU Y, XIA W L, et al. Community level stoichiometry characteristics of submerged macrophytes and their influencing factors in the mid-lower Yangtze lakes[J]. Journal of Lake Sciences, 2017, 29(2):430-438(in Chinese).

    [12] 郭超, 妥彬, 苏田, 等. 中国东黄海海岛5种常见草本的碳氮磷化学计量特征[J]. 应用生态学报, 2018, 29(2):380-388.

    GUO C, TUO B, SU T, et al. Carbon, nitrogen and phosphorus stoichiometry of five common herbaceous species across islands in the Yellow Sea and the East China Sea[J]. Chinese Journal of Applied Ecology, 2018, 29(2):380-388(in Chinese).

    [13] 李威, 何亮, 朱天顺, 等. 洱海苦草(Vallisneria natans)水深分布和叶片C、N、P化学计量学对不同水深的响应[J]. 湖泊科学, 2014, 26(4):585-592.

    LI W, HE L, ZHU T S, et al. Distribution and leaf C, N, P stoichiometry of Vallisneria natans in response to various water depths in a large mesotrophic lake, Lake Erhai, China[J]. Journal of Lake Sciences, 2014, 26(4):585-592(in Chinese).

    [14] 周晓彤, 王强, 范小莉, 等. 南四湖、东平湖与马踏湖湿地植被构成分析[J]. 山东林业科技, 2016, 46(4):1-6.

    ZHOU X T, WANG Q, FAN X L, et al. The vegetation composition analysis of Nansi Lake, Dongping Lake and Mata Lake[J]. Journal of Shandong Forestry Science and Technology, 2016, 46(4):1-6(in Chinese).

    [15] LU X, TIAN C, PEI H, et al. Environmental factors influencing cyanobacteria community structure in Dongping Lake, China[J]. Journal of Environmental Sciences, 2013, 25(11):2196-2206.
    [16] 姜广智. 东平县志[M]. 北京:中华书局, 2006. JIANG G Z. Dongping county annals[M].Beijing:Zhonghua Book Company, 2006(in Chinese).
    [17] 于少鹏, 孙广友, 窦素珍, 等. 东平湖水生植物的衰退及南水北调工程对其影响[J]. 中国环境科学, 2005, 25(2):200-204.

    YU S P, SUN G Y, DOU S Z, et al. The declining of hydrophyte of Dongping Lake and the influence of the south-to-north water transfer project on it[J]. China Environmental Science, 2005, 25(2):200-204(in Chinese).

    [18] 张金路, 段登选, 王志忠. 东平湖菹草大面积衰亡的危害及防治对策[J]. 环境研究与监测, 2009, 22(2):31-33.

    ZHANG J L, DUAN D X, WANG Z Z. Harm of the large-scale decline of P. crispus in Dongping Lake and its prevention and control measures[J]. Environmental Study and Monitoring, 2009, 22(2):31-33(in Chinese).

    [19] 张菊, 何振芳, 董杰, 等. 东平湖表层沉积物重金属的空间分布及污染评价[J]. 生态环境学报, 2016, 25(10):1699-1706.

    ZHANG J, HE Z F, DONG J, et al. Spatial distribution and pollution assessment of heavy metals in the surface sediments of Dongping Lake[J]. Ecology and Environmental Sciences, 2016, 25(10):1699-1706(in Chinese).

    [20] 侯慧平, 葛颜祥, 潘娜. 东平湖水质评价及水污染防治对策[J]. 人民黄河, 2013, 35(12):43-46.

    HOU H P, GE Y X, PAN N. Water quality assessment and water pollution prevention countermeasures of Dongping Lake[J]. Yellow River, 2013, 35(12):43-46(in Chinese).

    [21] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000:167-169. LU R K. Soil agricultural chemical analysis method[M]. Beijing:China Agricultural Science and Technology Press, 2000:167

    -169(in Chinese).

    [22] WILDING L P. Spatial variability:Its documentation, accommodation and implication to soil survey[M]//Nielsen D R, Bouman J. Soil spatial variability. Wageningen:The Neitherlands, 1985:166-194.
    [23] 余小青, 杨军, 刘乐冕, 等. 九龙江口滨海湿地生源要素空间分布特征[J]. 环境科学, 2012, 33(11):3739-3747.

    YU X Q, YANG J, LIU L M, et al. Spatial variations of biogenic elements in coastal wetland sediments of the Jiulong River Estuary[J]. Environmental Science, 2012, 33(11):3739-3747(in Chinese).

    [24] 王利平, 张剑, 耿亚军, 等. 渥洼池湿地芦苇叶片碳、氮、磷生态化学计量学特征及其影响因素[J]. 湿地科学, 2018, 16(3):417-423.

    WANG L P, ZHANG J, GENG Y J, et al. Ecological stoichimetry characteristics of carbon, nitrogen and phosphorus of Phragmites australis leaves in Wowachi wetland and their influence factors[J]. Wetland Science, 2018, 16(3):417-423(in Chinese).

    [25] 李威, 符辉, 曹特, 等. 抚仙湖沉水植物分布及其碳、氮和磷化学计量学特征[J]. 湖泊科学, 2017, 29(2):448-457.

    LI W, FU H, CAO T, et al. Distribution and carbon, nitrogen and phosphorus stoichiometric characteristics of submersed macrophytes in Lake Fuxian[J]. Journal of Lake Sciences, 2017, 29(2):448-457(in Chinese).

    [26] 刘文龙. 胶州湾湿地生态系统碳氮磷含量及生态化学计量学特征[D]. 青岛:青岛大学, 2014. LIU W L. Carbon, nitrogen and phosphorus contents and ecological stoichiometry of the Jiaozhou Bay wetland ecosystem[D]. Qingdao:Qingdao University, 2014(in Chinese).
    [27] 朱广伟, 陈英旭. 沉积物中有机质的环境行为研究进展[J]. 湖泊科学, 2001,13(3):272-279.

    ZHU G W, CHEN Y X. A review of geochemical behaviors and environmental effects of organic matter in sediments[J]. Journal of Lake Science, 2001,13(3):272-279(in Chinese).

    [28]
    [29] TIAN H Q, CHEN G S, ZHANG C, et al. Pattern and variation of C:N:P ratios in China's soils:A synthesis of observational data[J]. Biogeochemistry, 2010, 98(1/3):139-151.
    [30] 王朝晖, 李友富, 牟德海. 大亚湾大鹏澳海域C、N、BSi的沉积记录研究[J]. 海洋环境科学, 2010, 29(1):1-7.

    WANG Z H, LI Y F, MOU D H. Study on sedimentary record of TOC, TN and BSi in Dapengao area of Daya Bay[J]. Marine Environmental Science, 2010, 29(1):1-7(in Chinese).

    [31] 彭佩钦, 张文菊, 童成立, 等. 洞庭湖湿地土壤碳、氮、磷及其与土壤物理性状的关系[J]. 应用生态学报, 2005, 16(10):1872-1878.

    PENG P Q, ZHANG W J, TONG C L, et al. Soil C, N and P contents and their relationships with soil physical properties in wetlands of Dongting Lake floodplain[J]. Chinese Journal of Applied Ecology, 2005, 16(10):1872-1878(in Chinese).

    [32] 胡敏杰, 任洪昌, 邹芳芳, 等. 闽江河口淡水、半咸水沼泽土壤碳氮磷分布及计量学特征[J]. 中国环境科学, 2016, 36(3):917-926.

    HU M J, REN H C, ZHOU F F, et al. Spatiotemporal distribution and stoichiometry characteristics of carbon, nitrogen and phosphorus in surface soils of freshwater and brackish marshes in the Min River estuary[J]. China Environmental Science, 2016, 36(3):917-926(in Chinese).

    [33] 杨洋, 刘其根, 胡忠军, 等. 太湖流域沉积物碳氮磷分布与污染评价[J]. 环境科学学报, 2014, 34(12):3057-3064.

    YANG Y, LIU Q G, HU Z J, et al. Spatial distribution of sediment carbon,nitrogen and phosphorus and pollution evaluation of sediment in Taihu Lake Basin[J]. Acta Scientiae Circumstantiae, 2014, 34(12):3057-3064(in Chinese).

    [34] 曹磊, 宋金明, 李学刚, 等. 黄河三角洲典型潮汐湿地碳、氮、磷生物地球化学特征[J]. 海洋科学, 2015, 39(1):84-92.

    CAO L, SONG J M, LI X G, et al. Biogeochemical characteristics of soil C, N, P in the tidal wetlands of the Yellow River Delta[J]. Marine Sciences, 2015, 39(1):84-92(in Chinese).

    [35] PAUL E A, CLARK F E. Soil microbiology and biochemistry[M]. San Diego:Academic Press, 1989.
    [36] 张晓晶, 李畅游, 张生, 等. 乌梁素海表层沉积物营养盐的分布特征及环境意义[J]. 农业环境科学学报, 2010, 29(9):1770-1776.

    ZHANG X J, LI C Y, ZHANG S, et al. Distribution analysis of nutrient salt in the sediment of Lake Wulangsuhai with respect to its effects on the environment[J]. Journal of Agro-Environment Science, 2010, 29(9):1770-1776(in Chinese).

    [37] 杨惠敏, 王冬梅. 草-环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展[J]. 草业学报, 2011,20(2):244-252.

    YANG H M, WANG D M. Advances in the study on ecological stoichiometry in grass-environment system and its response to environmental factors[J]. Acta Prataculturae Sinica, 2011,20(2):244-252(in Chinese).

    [38] GVSEWELL S, KOERSELMAN W, VERHOEVEN J T A. Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands[J]. Ecological Applications, 2003, 13(2):372-384.
    [39] 李玉霖, 毛伟, 赵学勇, 等. 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究[J]. 环境科学, 2010, 31(8):1716-1725.

    LI Y L, MAO W, ZHAO X Y, et al. Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, North China[J]. Environmental Science, 2010, 31(8):1716-1725(in Chinese).

    [40] ELSER J J, DOBBERFUHL D R, MACKAY N A, et al. Organism size, life history, and N:P stoichiometry:Toward a unified view of cellular and ecosystem processes[J]. Bioscience, 1996, 46(9):674-684.
  • 加载中
计量
  • 文章访问数:  2640
  • HTML全文浏览数:  2640
  • PDF下载数:  64
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-14
张智博, 刘涛, 曹起孟, 张菊, 邓焕广. 东平湖沉积物-菹草系统碳、氮、磷空间分布及化学计量特征[J]. 环境化学, 2020, (8): 2263-2271. doi: 10.7524/j.issn.0254-6108.2019061401
引用本文: 张智博, 刘涛, 曹起孟, 张菊, 邓焕广. 东平湖沉积物-菹草系统碳、氮、磷空间分布及化学计量特征[J]. 环境化学, 2020, (8): 2263-2271. doi: 10.7524/j.issn.0254-6108.2019061401
ZHANG Zhibo, LIU Tao, CAO Qimeng, ZHANG Ju, DENG Huanguang. Spatial distribution and stoichiometric characteristics of C, N, P in the sediment-Potamogeton crispus system in Dongping Lake[J]. Environmental Chemistry, 2020, (8): 2263-2271. doi: 10.7524/j.issn.0254-6108.2019061401
Citation: ZHANG Zhibo, LIU Tao, CAO Qimeng, ZHANG Ju, DENG Huanguang. Spatial distribution and stoichiometric characteristics of C, N, P in the sediment-Potamogeton crispus system in Dongping Lake[J]. Environmental Chemistry, 2020, (8): 2263-2271. doi: 10.7524/j.issn.0254-6108.2019061401

东平湖沉积物-菹草系统碳、氮、磷空间分布及化学计量特征

    通讯作者: 邓焕广, E-mail: lcdhg@lcu.edu.cn
  • 聊城大学环境与规划学院, 聊城, 252000
基金项目:

国家自然科学基金(41401563),山东省自然科学基金(ZR2014JL028)和聊城大学科研启动基金(318051748)资助.

摘要: 为阐明东平湖沉积物-菹草生态系统营养元素的生态化学计量学特征及其指示意义,于2015年7月在全湖设置33个采样点,采集表层(0-5 cm)沉积物及菹草样品,分别对沉积物和菹草中TC、TN和TP含量进行测定与分析,探讨其空间分布及其生态化学计量学特征.结果表明,东平湖沉积物TC、TN和TP含量平均值分别为35.11 g·kg-1、1.98 g·kg-1和0.70 g·kg-1;菹草TC、TN和TP含量平均值分别为36.99 g·kg-1、2.22 g·kg-1和6.95 g·kg-1;沉积物TC、TN、TP和菹草TN、TP含量在空间分布上具有相似的特征,均表现为北湖区最高;沉积物TC、TN和TP两两之间均具有极显著正相关关系(P<0.01),表明沉积物中C、N、P具有同源性;生态化学计量学特征表明,沉积物中有机物质以外源输入为主,有机质分解不受氮元素的限制,而菹草生长则主要受氮元素限制.

English Abstract

参考文献 (40)

返回顶部

目录

/

返回文章
返回