MgCl2改性碳材料的制备及其CO2吸附性能

杨泛明, 符健斌, 邹创乾, 王超林, 贺国文, 祝小艳. MgCl2改性碳材料的制备及其CO2吸附性能[J]. 环境化学, 2019, (11): 2555-2562. doi: 10.7524/j.issn.0254-6108.2019061405
引用本文: 杨泛明, 符健斌, 邹创乾, 王超林, 贺国文, 祝小艳. MgCl2改性碳材料的制备及其CO2吸附性能[J]. 环境化学, 2019, (11): 2555-2562. doi: 10.7524/j.issn.0254-6108.2019061405
YANG Fanming, FU Jianbin, ZOU Chuangqian, WANG Chaolin, HE Guowen, ZHU Xiaoyan. Synthesis of MgCl2 modified carbon materials for CO2 adsorption[J]. Environmental Chemistry, 2019, (11): 2555-2562. doi: 10.7524/j.issn.0254-6108.2019061405
Citation: YANG Fanming, FU Jianbin, ZOU Chuangqian, WANG Chaolin, HE Guowen, ZHU Xiaoyan. Synthesis of MgCl2 modified carbon materials for CO2 adsorption[J]. Environmental Chemistry, 2019, (11): 2555-2562. doi: 10.7524/j.issn.0254-6108.2019061405

MgCl2改性碳材料的制备及其CO2吸附性能

    通讯作者: 杨泛明, E-mail: ychufei@163.com
  • 基金项目:

    湖南省自然科学基金(2019JJ50026),湖南省教育厅科学研究项目(18B447),湖南省教育厅科学研究重点项目(14A025)和湖南省自然科学基金(2017JJ2018)资助.

Synthesis of MgCl2 modified carbon materials for CO2 adsorption

    Corresponding author: YANG Fanming, ychufei@163.com
  • Fund Project: Supported by the Natural Science Foundation of Hunan Province (2019JJ50026), the Scientific Research Projects of Hunan Education Department (18B447), the Key Scientific Research Projects of Hunan Education Department (14A025) and the Natural Science Foundation of Hunan Province (2017JJ2018).
  • 摘要: 本文以对氯甲基聚苯乙烯微球为前驱体制备了多孔碳材料CCMPS,并利用MgCl2对其进行表面修饰制得了在较低CO2浓度环境中具有高效CO2吸附性能的吸附剂MgCl2n)/CCMPS.探究了吸附时间,MgCl2含量和气体流速对CO2吸附性能的影响,并对CO2吸附动力学进行了研究.研究表明,MgCl2n)/CCMPS的CO2吸附动力学符合Bangham模型.吸附时间为10 min,气体流速为10 mL·min-1时,CO2吸附量可达158.4 mg·g-1.循环10次,吸附量保持稳定.
  • 加载中
  • [1] 葛慧, 苗媛媛, 赵云霞, 等. 用于CO2捕集的金属有机框架(MOFs)材料改性研究进展[J]. 环境化学, 2018, 37(1):32-40.

    GE H, MIAO Y Y, ZHAO Y X, et al. Research progress of modified metal-organic frameworks for CO2 capture[J]. Environmental Chemistry, 2018, 37(1):32-40(in Chinese).

    [2] BOBADILLA L F, RIESCO-GARCIA J M, PENELAS-PEREZ C. Enabling continuous capture and catalytic conversion of flue gas CO2 to syngas in one process[J]. Journal of CO2 Utilization, 2016, 14:106-111.
    [3] LAN D H, GONG Y X, TAN N Y, et al. Multi-functionalization of GO with multi-cationic ILs as high efficient metal-free catalyst for CO2 cycloaddition under mild conditions[J]. Carbon, 2018, 127:245-254.
    [4] YANG F M, CHEN L, AU C T, et al. Preparation of triethylenetetramine-modified zirconosilicate molecular Sieve for carbon dioxide adsorption[J]. Environmental Progress & Sustainable Energy, 2016, 34:1814-1821.
    [5] WANG K, LI W, YIN Z G, et al. High-capacity Li4SiO4 based CO2 sorbents via a facile hydration-NaCl doping technique[J]. Energy & Fuels, 2017, 31:6257-6265.
    [6] ZHANG S, CHOWDHURY M B I, ZHANG Q, et al. Novel fluidizable K-doped HAc-Li4SiO4 sorbent for CO2 capture preparation and characterization[J]. Industrial & Engineering Chemistry Research, 2016, 55:12524-12531.
    [7] CHANG P H, CHANG Y P, CHENG S Y, et al. Ca-rich Ca-Al-oxide, high temperature stable sorbents prepared from hydrotalcite precursors:synthesis, characterization, and CO2 capture capacity[J]. ChemSusChem, 2011, 4(12):1844-1851.
    [8] GOEL C, BHUNIA H, BAJPAI P K. Resorcinol-formaldehyde based nanostructured carbons for CO2 adsorption:kinetics, isotherm and thermodynamic studies[J]. RSC Advances, 2015, 5:93563-93578.
    [9] PRZEIORSKI J, CZYZEWSKI A, PIETRZAK R, et al. MgO/CaO-Loaded activated carbon for carbon dioxide capture:practical aspects of use[J]. Industrial & Engineering Chemistry Research, 2013, 52:6669-6677.
    [10] GHOLIDOUST A,ATKINSON J D,HASHISHO Z. Enhancing CO2 adsorption via amine-impregnated activated carbon from oil sands coke[J]. Energy & Fuels, 2017, 31:1756-1763.
    [11] XIAO B,THOMAS K M. Competitive Adsorption of aqueous metal ions on an oxidized nanoporous activated carbon[J]. Langmuir, 2004, 20:4566-4578.
    [12] 田忠卫, 向敏, 赵文艳, 等. 聚合物碳化制备高比表面积微孔炭材料及其CO2吸附性能[J]. 环境化学, 2016, 35(5):1007-1013.

    TIAN Z W, XIANG M, ZHAO W Y, et al. High-surface-area microporous carbons derived from polymers carbonization and their CO2 adsorption properties[J]. Environmental Chemistry, 2016, 35(5):1007-1013(in Chinese).

    [13] JAHANDAR L M, ZIAEIAZAD H,SAYARI A. Insights into the hydrothermal stability of triamine-functionalized SBA-15 silica for CO2 adsorption[J]. Chemsuschem, 2017, 10:4037-4045.
    [14] SHI J J,LIU Y M, CHEN J, et al. Dynamic performance of CO2 adsorption with amine-modified SBA-16[J]. Acta Physico-Chimica Sinica, 2010, 26:3023-3029.
    [15] YANG F M, LIU Y, CHEN L, et al. Triethylenetetramine-modified P123-occluded Zr-SBA-15 molecular sieve for CO2 adsorption[J]. Australian Journal of Chemistry, 2015, 68:1427-1433.
    [16] MAITY D K, DEY A, GHOSH S, et al. Set of multifunctional azo functionalized semiconducting Cd(II)-MOFs showing photoswitching property and selective CO2 adsorption[J]. Inorganic Chemistry, 2018, 57:251-263.
    [17] GARGIULO V, ALFE M, RAGANATI F, et al. BTC-based metal-organic frameworks:Correlation between relevant structural features and CO2 adsorption performances[J]. Fuel, 2018, 222:319-326.
    [18] LU J, PEREZ-KRAP C, SUYETIN M, et al. A Robust binary supramolecular organic framework (SOF) with high CO2 adsorption and selectivity[J]. Journal of the American Chemical Society, 2014, 136:12828-12831.
    [19] LUO X Z, JIA X J, DENG J H, et al. A microporous hydrogen-bonded organic framework:Exceptional stability and highly selective adsorption of gas and liquid[J]. Journal of the American Chemical Society, 2013, 135:11684-11687.
    [20] LAN D H, YANG F M, LUO S L, et al. Water-tolerant graphene oxide as a high-efficiency catalyst for the synthesis of propylene carbonate from propylene oxide and carbon dioxide[J]. Carbon, 2014, 73:351-360.
    [21] REDZIC E, GARDF T, MARDARE C C, et al. Heterogeneous ziegler-natta catalysts with various sizes of MgCl2 crystallites:synthesis and characterization[J]. Iranian Polymer Journal, 2016, 25:321-337.
    [22] ROJANOTAIKUL P, KUNJARA S, AYUDHYA N, et al. Preparation of porous anhydrous MgCl2 particles by spray drying process[J]. Engineering Journal, 2012, 16:109-114.
    [23] MOURA P A S, BEZERRA D P, VILARRASA-GARCIA E, et al. Adsorption equilibria of CO2 and CH4 in cation-exchanged zeolites 13X[J]. Adsorption, 2016, 22:71-80.
    [24] RODRIGUEZ-MOSQUEDA R, PFEIFFER H. Thermokinetic analysis of the CO2 chemisorption on Li4SiO4 by using different gas flow rates and particle sizes[J]. The Journal of Physical Chemistry A, 2010, 114:4535-4541.
    [25] ZHAO Y, SHEN Y, BAI L, et al. Carbon dioxide adsorption on polyacrylamide-impregnated silica gel and breakthrough modeling[J]. Applied Surface Science, 2012, 261:708-716.
  • 加载中
计量
  • 文章访问数:  1711
  • HTML全文浏览数:  1711
  • PDF下载数:  36
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-14

MgCl2改性碳材料的制备及其CO2吸附性能

    通讯作者: 杨泛明, E-mail: ychufei@163.com
  • 湖南城市学院材料与化学工程学院, 益阳, 413000
基金项目:

湖南省自然科学基金(2019JJ50026),湖南省教育厅科学研究项目(18B447),湖南省教育厅科学研究重点项目(14A025)和湖南省自然科学基金(2017JJ2018)资助.

摘要: 本文以对氯甲基聚苯乙烯微球为前驱体制备了多孔碳材料CCMPS,并利用MgCl2对其进行表面修饰制得了在较低CO2浓度环境中具有高效CO2吸附性能的吸附剂MgCl2n)/CCMPS.探究了吸附时间,MgCl2含量和气体流速对CO2吸附性能的影响,并对CO2吸附动力学进行了研究.研究表明,MgCl2n)/CCMPS的CO2吸附动力学符合Bangham模型.吸附时间为10 min,气体流速为10 mL·min-1时,CO2吸附量可达158.4 mg·g-1.循环10次,吸附量保持稳定.

English Abstract

参考文献 (25)

目录

/

返回文章
返回