MgCl2改性碳材料的制备及其CO2吸附性能
Synthesis of MgCl2 modified carbon materials for CO2 adsorption
-
摘要: 本文以对氯甲基聚苯乙烯微球为前驱体制备了多孔碳材料CCMPS,并利用MgCl2对其进行表面修饰制得了在较低CO2浓度环境中具有高效CO2吸附性能的吸附剂MgCl2(n)/CCMPS.探究了吸附时间,MgCl2含量和气体流速对CO2吸附性能的影响,并对CO2吸附动力学进行了研究.研究表明,MgCl2(n)/CCMPS的CO2吸附动力学符合Bangham模型.吸附时间为10 min,气体流速为10 mL·min-1时,CO2吸附量可达158.4 mg·g-1.循环10次,吸附量保持稳定.Abstract: Porous carbon of CCMPS was prepared using p-chloromethyl polystyrene microsphere as precursor. Then, the modifiers of MgCl2(n)/CCMPS with efficient CO2 adsorption performance in a low CO2 concentration were synthesized by the introduction of MgCl2 on the surface of CCMPS. In the present study, the influence of adsorption time, the content of MgCl2 and gas flow rate for CO2 adsorption performance were investigated. Besides, the dynamic properties of CO2 adsorption was also studied. The results show that the dynamic properties of MgCl2(n)/CCMPS are in compliance with the Bangham model. In this study, the maximum capacity of 158.4 mg·g-1 is achieved after the adsorption for 10 min in a flow rate of 10 mL·min-1. In addition, the capacity keeps stable after 10 cycles of adsorption-desorption process.
-
Key words:
- p-chloromethyl polystyrene /
- MgCl2 /
- CO2 /
- adsorption /
- dynamics
-
[1] 葛慧, 苗媛媛, 赵云霞, 等. 用于CO2捕集的金属有机框架(MOFs)材料改性研究进展[J]. 环境化学, 2018, 37(1):32-40. GE H, MIAO Y Y, ZHAO Y X, et al. Research progress of modified metal-organic frameworks for CO2 capture[J]. Environmental Chemistry, 2018, 37(1):32-40(in Chinese).
[2] BOBADILLA L F, RIESCO-GARCIA J M, PENELAS-PEREZ C. Enabling continuous capture and catalytic conversion of flue gas CO2 to syngas in one process[J]. Journal of CO2 Utilization, 2016, 14:106-111. [3] LAN D H, GONG Y X, TAN N Y, et al. Multi-functionalization of GO with multi-cationic ILs as high efficient metal-free catalyst for CO2 cycloaddition under mild conditions[J]. Carbon, 2018, 127:245-254. [4] YANG F M, CHEN L, AU C T, et al. Preparation of triethylenetetramine-modified zirconosilicate molecular Sieve for carbon dioxide adsorption[J]. Environmental Progress & Sustainable Energy, 2016, 34:1814-1821. [5] WANG K, LI W, YIN Z G, et al. High-capacity Li4SiO4 based CO2 sorbents via a facile hydration-NaCl doping technique[J]. Energy & Fuels, 2017, 31:6257-6265. [6] ZHANG S, CHOWDHURY M B I, ZHANG Q, et al. Novel fluidizable K-doped HAc-Li4SiO4 sorbent for CO2 capture preparation and characterization[J]. Industrial & Engineering Chemistry Research, 2016, 55:12524-12531. [7] CHANG P H, CHANG Y P, CHENG S Y, et al. Ca-rich Ca-Al-oxide, high temperature stable sorbents prepared from hydrotalcite precursors:synthesis, characterization, and CO2 capture capacity[J]. ChemSusChem, 2011, 4(12):1844-1851. [8] GOEL C, BHUNIA H, BAJPAI P K. Resorcinol-formaldehyde based nanostructured carbons for CO2 adsorption:kinetics, isotherm and thermodynamic studies[J]. RSC Advances, 2015, 5:93563-93578. [9] PRZEIORSKI J, CZYZEWSKI A, PIETRZAK R, et al. MgO/CaO-Loaded activated carbon for carbon dioxide capture:practical aspects of use[J]. Industrial & Engineering Chemistry Research, 2013, 52:6669-6677. [10] GHOLIDOUST A,ATKINSON J D,HASHISHO Z. Enhancing CO2 adsorption via amine-impregnated activated carbon from oil sands coke[J]. Energy & Fuels, 2017, 31:1756-1763. [11] XIAO B,THOMAS K M. Competitive Adsorption of aqueous metal ions on an oxidized nanoporous activated carbon[J]. Langmuir, 2004, 20:4566-4578. [12] 田忠卫, 向敏, 赵文艳, 等. 聚合物碳化制备高比表面积微孔炭材料及其CO2吸附性能[J]. 环境化学, 2016, 35(5):1007-1013. TIAN Z W, XIANG M, ZHAO W Y, et al. High-surface-area microporous carbons derived from polymers carbonization and their CO2 adsorption properties[J]. Environmental Chemistry, 2016, 35(5):1007-1013(in Chinese).
[13] JAHANDAR L M, ZIAEIAZAD H,SAYARI A. Insights into the hydrothermal stability of triamine-functionalized SBA-15 silica for CO2 adsorption[J]. Chemsuschem, 2017, 10:4037-4045. [14] SHI J J,LIU Y M, CHEN J, et al. Dynamic performance of CO2 adsorption with amine-modified SBA-16[J]. Acta Physico-Chimica Sinica, 2010, 26:3023-3029. [15] YANG F M, LIU Y, CHEN L, et al. Triethylenetetramine-modified P123-occluded Zr-SBA-15 molecular sieve for CO2 adsorption[J]. Australian Journal of Chemistry, 2015, 68:1427-1433. [16] MAITY D K, DEY A, GHOSH S, et al. Set of multifunctional azo functionalized semiconducting Cd(II)-MOFs showing photoswitching property and selective CO2 adsorption[J]. Inorganic Chemistry, 2018, 57:251-263. [17] GARGIULO V, ALFE M, RAGANATI F, et al. BTC-based metal-organic frameworks:Correlation between relevant structural features and CO2 adsorption performances[J]. Fuel, 2018, 222:319-326. [18] LU J, PEREZ-KRAP C, SUYETIN M, et al. A Robust binary supramolecular organic framework (SOF) with high CO2 adsorption and selectivity[J]. Journal of the American Chemical Society, 2014, 136:12828-12831. [19] LUO X Z, JIA X J, DENG J H, et al. A microporous hydrogen-bonded organic framework:Exceptional stability and highly selective adsorption of gas and liquid[J]. Journal of the American Chemical Society, 2013, 135:11684-11687. [20] LAN D H, YANG F M, LUO S L, et al. Water-tolerant graphene oxide as a high-efficiency catalyst for the synthesis of propylene carbonate from propylene oxide and carbon dioxide[J]. Carbon, 2014, 73:351-360. [21] REDZIC E, GARDF T, MARDARE C C, et al. Heterogeneous ziegler-natta catalysts with various sizes of MgCl2 crystallites:synthesis and characterization[J]. Iranian Polymer Journal, 2016, 25:321-337. [22] ROJANOTAIKUL P, KUNJARA S, AYUDHYA N, et al. Preparation of porous anhydrous MgCl2 particles by spray drying process[J]. Engineering Journal, 2012, 16:109-114. [23] MOURA P A S, BEZERRA D P, VILARRASA-GARCIA E, et al. Adsorption equilibria of CO2 and CH4 in cation-exchanged zeolites 13X[J]. Adsorption, 2016, 22:71-80. [24] RODRIGUEZ-MOSQUEDA R, PFEIFFER H. Thermokinetic analysis of the CO2 chemisorption on Li4SiO4 by using different gas flow rates and particle sizes[J]. The Journal of Physical Chemistry A, 2010, 114:4535-4541. [25] ZHAO Y, SHEN Y, BAI L, et al. Carbon dioxide adsorption on polyacrylamide-impregnated silica gel and breakthrough modeling[J]. Applied Surface Science, 2012, 261:708-716.
计量
- 文章访问数: 1711
- HTML全文浏览数: 1711
- PDF下载数: 36
- 施引文献: 0