煅烧的ZnWO4催化超声降解藏红T

何玲玲, 李昱, 齐齐, 萧启明, 黄峰, 周卫申, 王新. 煅烧的ZnWO4催化超声降解藏红T[J]. 环境化学, 2020, (5): 1290-1296. doi: 10.7524/j.issn.0254-6108.2019061803
引用本文: 何玲玲, 李昱, 齐齐, 萧启明, 黄峰, 周卫申, 王新. 煅烧的ZnWO4催化超声降解藏红T[J]. 环境化学, 2020, (5): 1290-1296. doi: 10.7524/j.issn.0254-6108.2019061803
HE Lingling, LI Yu, QI Qi, XIAO Qiming, HUANG Feng, ZHOU Weishen, WANG Xin. Sonocatalytic degradation of C.I. Basic Red 2 in the presence of calcined ZnWO4[J]. Environmental Chemistry, 2020, (5): 1290-1296. doi: 10.7524/j.issn.0254-6108.2019061803
Citation: HE Lingling, LI Yu, QI Qi, XIAO Qiming, HUANG Feng, ZHOU Weishen, WANG Xin. Sonocatalytic degradation of C.I. Basic Red 2 in the presence of calcined ZnWO4[J]. Environmental Chemistry, 2020, (5): 1290-1296. doi: 10.7524/j.issn.0254-6108.2019061803

煅烧的ZnWO4催化超声降解藏红T

    通讯作者: 王新, E-mail: xin_wang@lnu.edu.cn
  • 基金项目:

    辽宁省自然基金指导计划项目(2019-ZD-0190)和沈阳化工大学"大学生创新创业训练计划"项目(201810149092)资助.

Sonocatalytic degradation of C.I. Basic Red 2 in the presence of calcined ZnWO4

    Corresponding author: WANG Xin, xin_wang@lnu.edu.cn
  • Fund Project: Supported by the Province Natural Science Foundation of Liaoning (2019-ZD-0190) and the Training Programs of Innovation and Entrepreneurship for Undergraduates of Shenyang University of Chemical Technology (201810149092).
  • 摘要: 本文使用水热合成法制备了ZnWO4并进行了高温煅烧,以藏红T(BR2)为降解对象考察了煅烧后ZnWO4催化超声降解有机污染物的活性.结果表明,当煅烧温度为673 K时,ZnWO4具有更好的催化超声降解活性.ZnWO4催化超声降解BR2的主要作用机制是产生的活性氧(ROS)如·OH和·O2-以及空穴(h+)的氧化作用.当煅烧后ZnWO4的加入量为1.5 g·L-1、BR2初始浓度为10 mg·L-1、溶液起始pH值为7、超声功率为200 W、超声时间为120 min、温度为25±0.1℃时,BR2的降解率为90.23%±0.93%.研究结果表明,煅烧可显著提升ZnWO4催化超声降解有机污染物的活性,将为其进一步应用提供研究基础.
  • 加载中
  • [1] 高博, 刘彬, 王新, 等. 半导体材料联合超声用于降解有机污染物研究进展[J]. 生态与农村环境学报, 2018, 34(6):481-488.

    GAO B, LIU B, WANG X, et al. Research progress of semiconductor materials combined with ultrasound in degradation of organic pollutants[J]. Journal of Ecology and Rural Environment, 2018, 34(6):481-488(in Chinese).

    [2] WU X H, ZHOU S, LU X H. Decomposition of black liquor by ultrasound process[J]. Chinese Journal of Reactive Polymers, 2004(Z1):22-28.
    [3] 张格红, 赵平歌, 廖志鹏, 等. 超声强化铋掺杂氧化铟降解偶氮染料废水[J]. 环境化学, 2016, 35(3):526-532.

    ZHANG G H, ZHAO P G, LIAO Z P, et al. Ultrasonic enhancement of bismuth mixed indium oxide for degradation of azo dye wastewater[J]. Environmental Chemistry, 2016, 35(3):526-532(in Chinese).

    [4] HE L L, LIU X P, WANG Y X, et al. Sonochemical degradation of methyl orange in the presence of Bi2WO6:Effect of operating parameters and the generated reactives oxygen species[J]. Ultrasonic Sonochemistry, 2016,33:90-98.
    [5] 郭喜丰, 肖广全, 马丽莉, 等. 超声波降解四环素类抗生素废水[J]. 环境工程学报, 2014, 8(4):1503-1509.

    GUO X F, XIAO G Q, MA L L, et al. Ultrasonic degradation of tetracycline antibiotic wastewater[J]. Journal of Environmental Engineering, 2014, 8(4):1503-1509(in Chinese).

    [6] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(5):1541-1549.

    HOU S, LIU X C. Progress in preparation and performance modification of new photocatalyst zinc tungstate[J]. Material Introduction, 2019, 33(5):1541-1549(in Chinese).

    [7] 罗龙京. ZnWO4及其复合电极材料的制备与电化学性能的研究[D]. 重庆:重庆大学, 2018. LUO L J. Preparation and electrochemical properties of ZnWO4 and its composite electrode materials[D]. Chongqing:Chongqing University, 2018(in Chinese).
    [8] 王新, 刘贤平, 王志新, 等. ZnWO4催化超声降解偶氮染料酸性铬蓝K//中国化学会. 中国化学会第30届学术年会摘要集-第二十六分会:环境化学[C]. 中国化学会:中国化学会, 2016. WANG X, LIU X P, WANG Z X, et al. Sonochemical degradation of C.I. mordant blue K in the presence of ZnWO4//Chinese Chemical Association. Abstract of the 30th Academic Conference of China Chemical Association 26

    th Session:Environmental Chemistry[C]. China Chemical Association:China Chemical Association, 2016(in Chinese).

    [9] 何玲玲, 高峰伟, 李昱, 等. 钨酸钴催化超声降解模拟日落黄废水的研究[J]. 环境污染与防治, 2018, 40(11):1285-1288.

    HE L L, GAO F W, LI Y, et al. Studies on sonocatalytic degradation of simulated sunset yellow wastewater in the presence of CoWO4[J]. Environmental Pollution & Control, 2018, 40(11):1285-1288(in Chinese).

    [10] DESESSO J M, SCIALLI A R, GOERINGER G C. D-mannitol, a specific hydroxyl free radical scavenger, reduces the developmental toxicity of hydroxyurea in rabbits[J]. Teratology, 1994, 49:248-259.
    [11] DING P, DI J, CHEN X, et al. Partially etched Bi2O2CO3 by metal chloride for enhanced reactive oxygen species generation:A tale of two strategies[J]. Applied Catalysis B:Environmental, 2019, 245:325-333.
    [12] YU T, BAI J, HU K, et al. The effect of free radical scavenger and antioxidant on the increase in intracellular adriamycin accumulation induced by ultrasound[J]. Ultrasonics Sonochemistry, 2003, 10:33-35.
    [13] HASSANI A, EGHBALI P, METIN Ö. Sonocatalytic removal of methylene blue from water solution by cobalt ferrite/mesoporous graphitic carbon nitride (CoFe2O4/mpg-C3N4) nanocomposites:Response surface methodology approach[J]. Environmental Science and Pollution Research, 2018, 25:32140-32155.
    [14] MAHDAVI R, TALESH S S A. Enhancement of ultrasound-assisted degradation of Eosin B in the presence of nanoparticles of ZnO as sonocatalyst[J]. Ultrasonics-Sonochemistry, 2019, 51:230-240.
    [15] ADEWUYI Y G. Sonochemistry in environmental remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water[J]. Environmental Science & Technology, 2005, 39:8557-8570.
    [16] EGHBALI P, HASSANI A, SVNDV B, et al. Strontium titanate nanocubes assembled on mesoporous graphitic carbon nitride (SrTiO3/mpg-C3N4):Preparation, characterization and catalytic performance[J]. Journal of Molecular Liquids, 2019, 290:111208.
    [17] YAO Y, SUN M, YUAN X, et al. One-step hydrothermal synthesis of N/Ti3+ co-doping multiphasic TiO2/BiOBr heterojunctions towards enhanced sonocatalytic performance[J]. Ultrasonics-Sonochemistry, 2018, 49:69-78.
    [18] REN H T, YANG Q. Fabrication of Ag2O/TiO2 with enhanced photocatalytic performances for dye pollutants degradation by a pH-induced method[J]. Applied Surface Science, 2017, 396:530-538.
    [19] KHATAEE A, FATHINIA S, FATHINIA M. Production of pyrite nanoparticles using high energy planetary ball milling for sonocatalytic degradation of sulfasalazine[J]. Ultrasonics Sonochemistry, 2017, 34:904-915.
    [20] FARHADI S, SIADATNASAB F, KHATAEE A. Ultrasound-assisted degradation of organic dyes over magnetic CoFe2O4@ZnS core-shell nanocomposite[J]. Ultrasonics Sonochemistry, 2017, 37:298-309.
    [21] SOLTANI R D C, MIRAFTABI Z, MAHMOUDI M, et al. Stone cutting industry waste-supported zinc oxide nanostructures for ultrasonic assisted decomposition of an anti-inflammatory non-steroidal pharmaceutical compound[J]. Ultrasonics-Sonochemistry, 2019, 58:104669.
    [22] GHOLAMI P, DINPAZHOH L, KHATAEE A, et al. Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium[J]. Journal of Hazardous Materials, 2020,381:120742.
    [23] ACISLI O, KHATAEE A, SOLTANI R D C, et al. Ultrasound-assisted Fenton process using siderite nanoparticles prepared via planetary ball milling for removal of reactive yellow 81 in aqueous phase[J]. Ultrasonics Sonochemistry, 2017, 35:210-218.
    [24] CHEN C R, ZENG H Y, YI M Y, et al. Fabrication of Ag2O/Ag decorated ZnAl-layered double hydroxide with enhanced visible light photocatalytic activity for tetracycline degradation[J]. Ecotoxicology and Environmental Safety, 2019, 172:423-431.
  • 加载中
计量
  • 文章访问数:  2024
  • HTML全文浏览数:  2024
  • PDF下载数:  30
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-18

煅烧的ZnWO4催化超声降解藏红T

    通讯作者: 王新, E-mail: xin_wang@lnu.edu.cn
  • 1. 沈阳化工大学应用化学学院, 沈阳, 110142;
  • 2. 辽宁大学药学院, 沈阳, 110036
基金项目:

辽宁省自然基金指导计划项目(2019-ZD-0190)和沈阳化工大学"大学生创新创业训练计划"项目(201810149092)资助.

摘要: 本文使用水热合成法制备了ZnWO4并进行了高温煅烧,以藏红T(BR2)为降解对象考察了煅烧后ZnWO4催化超声降解有机污染物的活性.结果表明,当煅烧温度为673 K时,ZnWO4具有更好的催化超声降解活性.ZnWO4催化超声降解BR2的主要作用机制是产生的活性氧(ROS)如·OH和·O2-以及空穴(h+)的氧化作用.当煅烧后ZnWO4的加入量为1.5 g·L-1、BR2初始浓度为10 mg·L-1、溶液起始pH值为7、超声功率为200 W、超声时间为120 min、温度为25±0.1℃时,BR2的降解率为90.23%±0.93%.研究结果表明,煅烧可显著提升ZnWO4催化超声降解有机污染物的活性,将为其进一步应用提供研究基础.

English Abstract

参考文献 (24)

目录

/

返回文章
返回