煅烧的ZnWO4催化超声降解藏红T
Sonocatalytic degradation of C.I. Basic Red 2 in the presence of calcined ZnWO4
-
摘要: 本文使用水热合成法制备了ZnWO4并进行了高温煅烧,以藏红T(BR2)为降解对象考察了煅烧后ZnWO4催化超声降解有机污染物的活性.结果表明,当煅烧温度为673 K时,ZnWO4具有更好的催化超声降解活性.ZnWO4催化超声降解BR2的主要作用机制是产生的活性氧(ROS)如·OH和·O2-以及空穴(h+)的氧化作用.当煅烧后ZnWO4的加入量为1.5 g·L-1、BR2初始浓度为10 mg·L-1、溶液起始pH值为7、超声功率为200 W、超声时间为120 min、温度为25±0.1℃时,BR2的降解率为90.23%±0.93%.研究结果表明,煅烧可显著提升ZnWO4催化超声降解有机污染物的活性,将为其进一步应用提供研究基础.Abstract: ZnWO4 was prepared by a hydrothermal method and further calcined at different temperatures in this paper. The sonocatalytic degradation activity of calcined ZnWO4 to organic pollutants was studied with C.I. Basic Red 2 (BR2) as the degradation object. The results showed that ZnWO4 had better sonocatalytic degradation activity when calcining temperature was 673 K. The main mechanism was the production of the reactive oxygen species (ROS), such as ·OH and ·O2-, and holes (h+), which were identified and played major roles during the oxidation process. When the addition amount of ZnWO4 was 1.5 g·L-1, the initial concentration of BR2 was 10 mg·L-1, the initial pH was 7, the ultrasonic power was 200 W, the ultrasonic time was 120 min, and the temperature was 25±0.1 ℃, the degradation ratio of BR2 was 90.23%±0.93%. The results showed that calcination could significantly improve the sonocatalytic degradation activity of ZnWO4 to organic pollutants, which would provide research basis for its further application.
-
Key words:
- ZnWO4 /
- C.I.Basic Red 2(BR2) /
- calcination /
- sonocatalytic degradation
-
-
[1] 高博, 刘彬, 王新, 等. 半导体材料联合超声用于降解有机污染物研究进展[J]. 生态与农村环境学报, 2018, 34(6):481-488. GAO B, LIU B, WANG X, et al. Research progress of semiconductor materials combined with ultrasound in degradation of organic pollutants[J]. Journal of Ecology and Rural Environment, 2018, 34(6):481-488(in Chinese).
[2] WU X H, ZHOU S, LU X H. Decomposition of black liquor by ultrasound process[J]. Chinese Journal of Reactive Polymers, 2004(Z1):22-28. [3] 张格红, 赵平歌, 廖志鹏, 等. 超声强化铋掺杂氧化铟降解偶氮染料废水[J]. 环境化学, 2016, 35(3):526-532. ZHANG G H, ZHAO P G, LIAO Z P, et al. Ultrasonic enhancement of bismuth mixed indium oxide for degradation of azo dye wastewater[J]. Environmental Chemistry, 2016, 35(3):526-532(in Chinese).
[4] HE L L, LIU X P, WANG Y X, et al. Sonochemical degradation of methyl orange in the presence of Bi2WO6:Effect of operating parameters and the generated reactives oxygen species[J]. Ultrasonic Sonochemistry, 2016,33:90-98. [5] 郭喜丰, 肖广全, 马丽莉, 等. 超声波降解四环素类抗生素废水[J]. 环境工程学报, 2014, 8(4):1503-1509. GUO X F, XIAO G Q, MA L L, et al. Ultrasonic degradation of tetracycline antibiotic wastewater[J]. Journal of Environmental Engineering, 2014, 8(4):1503-1509(in Chinese).
[6] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(5):1541-1549. HOU S, LIU X C. Progress in preparation and performance modification of new photocatalyst zinc tungstate[J]. Material Introduction, 2019, 33(5):1541-1549(in Chinese).
[7] 罗龙京. ZnWO4及其复合电极材料的制备与电化学性能的研究[D]. 重庆:重庆大学, 2018. LUO L J. Preparation and electrochemical properties of ZnWO4 and its composite electrode materials[D]. Chongqing:Chongqing University, 2018(in Chinese). [8] 王新, 刘贤平, 王志新, 等. ZnWO4催化超声降解偶氮染料酸性铬蓝K//中国化学会. 中国化学会第30届学术年会摘要集-第二十六分会:环境化学[C]. 中国化学会:中国化学会, 2016. WANG X, LIU X P, WANG Z X, et al. Sonochemical degradation of C.I. mordant blue K in the presence of ZnWO4//Chinese Chemical Association. Abstract of the 30th Academic Conference of China Chemical Association 26 th Session:Environmental Chemistry[C]. China Chemical Association:China Chemical Association, 2016(in Chinese).
[9] 何玲玲, 高峰伟, 李昱, 等. 钨酸钴催化超声降解模拟日落黄废水的研究[J]. 环境污染与防治, 2018, 40(11):1285-1288. HE L L, GAO F W, LI Y, et al. Studies on sonocatalytic degradation of simulated sunset yellow wastewater in the presence of CoWO4[J]. Environmental Pollution & Control, 2018, 40(11):1285-1288(in Chinese).
[10] DESESSO J M, SCIALLI A R, GOERINGER G C. D-mannitol, a specific hydroxyl free radical scavenger, reduces the developmental toxicity of hydroxyurea in rabbits[J]. Teratology, 1994, 49:248-259. [11] DING P, DI J, CHEN X, et al. Partially etched Bi2O2CO3 by metal chloride for enhanced reactive oxygen species generation:A tale of two strategies[J]. Applied Catalysis B:Environmental, 2019, 245:325-333. [12] YU T, BAI J, HU K, et al. The effect of free radical scavenger and antioxidant on the increase in intracellular adriamycin accumulation induced by ultrasound[J]. Ultrasonics Sonochemistry, 2003, 10:33-35. [13] HASSANI A, EGHBALI P, METIN Ö. Sonocatalytic removal of methylene blue from water solution by cobalt ferrite/mesoporous graphitic carbon nitride (CoFe2O4/mpg-C3N4) nanocomposites:Response surface methodology approach[J]. Environmental Science and Pollution Research, 2018, 25:32140-32155. [14] MAHDAVI R, TALESH S S A. Enhancement of ultrasound-assisted degradation of Eosin B in the presence of nanoparticles of ZnO as sonocatalyst[J]. Ultrasonics-Sonochemistry, 2019, 51:230-240. [15] ADEWUYI Y G. Sonochemistry in environmental remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water[J]. Environmental Science & Technology, 2005, 39:8557-8570. [16] EGHBALI P, HASSANI A, SVNDV B, et al. Strontium titanate nanocubes assembled on mesoporous graphitic carbon nitride (SrTiO3/mpg-C3N4):Preparation, characterization and catalytic performance[J]. Journal of Molecular Liquids, 2019, 290:111208. [17] YAO Y, SUN M, YUAN X, et al. One-step hydrothermal synthesis of N/Ti3+ co-doping multiphasic TiO2/BiOBr heterojunctions towards enhanced sonocatalytic performance[J]. Ultrasonics-Sonochemistry, 2018, 49:69-78. [18] REN H T, YANG Q. Fabrication of Ag2O/TiO2 with enhanced photocatalytic performances for dye pollutants degradation by a pH-induced method[J]. Applied Surface Science, 2017, 396:530-538. [19] KHATAEE A, FATHINIA S, FATHINIA M. Production of pyrite nanoparticles using high energy planetary ball milling for sonocatalytic degradation of sulfasalazine[J]. Ultrasonics Sonochemistry, 2017, 34:904-915. [20] FARHADI S, SIADATNASAB F, KHATAEE A. Ultrasound-assisted degradation of organic dyes over magnetic CoFe2O4@ZnS core-shell nanocomposite[J]. Ultrasonics Sonochemistry, 2017, 37:298-309. [21] SOLTANI R D C, MIRAFTABI Z, MAHMOUDI M, et al. Stone cutting industry waste-supported zinc oxide nanostructures for ultrasonic assisted decomposition of an anti-inflammatory non-steroidal pharmaceutical compound[J]. Ultrasonics-Sonochemistry, 2019, 58:104669. [22] GHOLAMI P, DINPAZHOH L, KHATAEE A, et al. Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium[J]. Journal of Hazardous Materials, 2020,381:120742. [23] ACISLI O, KHATAEE A, SOLTANI R D C, et al. Ultrasound-assisted Fenton process using siderite nanoparticles prepared via planetary ball milling for removal of reactive yellow 81 in aqueous phase[J]. Ultrasonics Sonochemistry, 2017, 35:210-218. [24] CHEN C R, ZENG H Y, YI M Y, et al. Fabrication of Ag2O/Ag decorated ZnAl-layered double hydroxide with enhanced visible light photocatalytic activity for tetracycline degradation[J]. Ecotoxicology and Environmental Safety, 2019, 172:423-431. -

计量
- 文章访问数: 2631
- HTML全文浏览数: 2631
- PDF下载数: 96
- 施引文献: 0