水力空化(HC)联合高级氧化技术去除典型手性药物的研究进展

杨亚红, 芦婉蒙, 刘恩露, 林秀锋, 李攀. 水力空化(HC)联合高级氧化技术去除典型手性药物的研究进展[J]. 环境化学, 2020, (5): 1244-1253. doi: 10.7524/j.issn.0254-6108.2019062005
引用本文: 杨亚红, 芦婉蒙, 刘恩露, 林秀锋, 李攀. 水力空化(HC)联合高级氧化技术去除典型手性药物的研究进展[J]. 环境化学, 2020, (5): 1244-1253. doi: 10.7524/j.issn.0254-6108.2019062005
YANG Yahong, LU Wanmeng, LIU Enlu, LIN Xiufeng, LI Pan. Degradation of chiral drugs by hydrodynamic cavitation (HC) combined with advanced oxidation technology[J]. Environmental Chemistry, 2020, (5): 1244-1253. doi: 10.7524/j.issn.0254-6108.2019062005
Citation: YANG Yahong, LU Wanmeng, LIU Enlu, LIN Xiufeng, LI Pan. Degradation of chiral drugs by hydrodynamic cavitation (HC) combined with advanced oxidation technology[J]. Environmental Chemistry, 2020, (5): 1244-1253. doi: 10.7524/j.issn.0254-6108.2019062005

水力空化(HC)联合高级氧化技术去除典型手性药物的研究进展

    通讯作者: 杨亚红, E-mail: yangyahong@lut.cn
  • 基金项目:

    建工七七基金(TJ2017-G01)资助.

Degradation of chiral drugs by hydrodynamic cavitation (HC) combined with advanced oxidation technology

    Corresponding author: YANG Yahong, yangyahong@lut.cn
  • Fund Project: Supported by Alumni Foundation of Civil Engineering 77 (TJ2017-G01).
  • 摘要: 普通药物中大部分是具有一对对映异构体手性结构的手性药物(CDs),且CDs作为一种新型微污染物在水体中被频繁发现.该药物因其种类和组成的不同,内部的对映异构体可能会表现出特异性,如体现在毒性、与蛋白质结合吸收以及在河流中自然衰减率等方面.而高级氧化法(AOPs),如空化(水力空化和声空化)、Fenton法和光催化法等技术手段,在去除CDs方面已表现出较大潜力.本研究基于对映体结构,全面梳理了CDs的性质、来源及对人类健康的影响,拟探究水环境中典型CDs的手性反转和药理学立体选择性特征,并归纳了水力空化方法联合AOP技术对萘普生、布洛芬等典型CDs去除效果特点,重点讨论了该方法作用机理与其利弊,探究最优适用条件,最终归纳出目前CDs分离分析技术的瓶颈及未来环境中CDs去除技术的研究趋势.
  • 加载中
  • [1] GARRISON A W. Probing the enantioselectivity of chiral pesticides[J].Environ Sci Technol,2006,40:16-23.
    [2] KOLPIND, FURLONG E, MEYER M, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. Streams//Water Encyclopedia[M]. John Wiley & Sons, Inc, 2005.
    [3] STANLEY J K,RAMIREZ A J,CHAMBLISS C K,et al. Enantiospecific sublethal effects of the antidepressant fluoxetine to a model aquatic vertebrate and invertebrate[J].Chemosphere,2007,69(1):9-16.
    [4] RENNER R. Chiral compounds show promise as environmental tracers[J]. Environ Sci Technol,1996,30:16A-17A.
    [5] JELICA, GROS M, GINEBREDA A, et al. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment[J]. Water Research,2011, 45(3):1165-1176.
    [6] ANDREOZZIR, RAFFAELE M, PAXEUS N. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment[J]. Chemosphere, 2003, 50(10):1319-1330.
    [7] VILLEGAS G P, SILVA A J, GIRALDO A L, et al. Enhancement and inhibition effects of water matrices during the sonochemical degradation of the antibiotic dicloxacillin[J]. Ultrasonics Sonochemistry, 2015, 22:211-219.
    [8] SANGANYADOE, LU Z, FU Q, et al. Chiral pharmaceuticals:A review on their environmental occurrence and fate processes[J]. Water Research, 2017, 124:527-542.
    [9] DAVID M, RONALD G, KAI T.Mechanisms of acetohydroxyacid synthases[J].Current Opinion in Chemical Biology, 2005, 9:475-481.
    [10] RIVERA U, JOSE, GOMEZ P, et al. Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents[J]. Journal of Environmental Management, 2013, 131(Complete):16-24.
    [11] AHMED M B, ZHOU J L, NGO H H, et al. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater:A critical review[J]. Journal of Hazardous Materials, 2016,323(Pt A):274-298.
    [12] CRUZ M, CARLES, FERRANDO C L, et al. Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor[J]. Water Research, 2013, 47(14):5200-5210.
    [13] DAWAS M A, GUR R S, LERMAN S, et al. Co-metabolic oxidation of pharmaceutical compounds by a nitrifying bacterial enrichment[J]. Bioresource Technology, 2014, 167:336-342.
    [14] COMBARROS R G, ROSAS I, LAVIN, A. G, et al. Influence of biofilm on activated carbon on the adsorption and biodegradation of salicylic acid in wastewater[J]. Water, Air, & Soil Pollution, 2014, 225(2):1858-245.
    [15] REIS PATRICIA J M, REIS A C, RICKEN B, et al. Biodegradation of sulfamethoxazole and other sulfonamides by Achromobacter denitrificans PR1[J]. Journal of Hazardous Materials, 2014, 280:741-749.
    [16] CARLOS E, RODRIGUEZ R, ENRIQUEB, et al. Removal of pharmaceuticals, polybrominated flame retardants and UV-filters from sludge by the fungus Trametes versicolor in bioslurry reactor[J]. Journal of Hazardous Materials, 2012, 233-234:235-243.
    [17] GROSM, CRUZ M C, MARCO U E, et al. Biodegradation of the X-ray contrast agent iopromide and the fluoroquinolone antibiotic ofloxacin by the white rot fungus Trametes versicolor in hospital wastewaters and identification of degradation products[J]. Water Research, 2014, 60:228-241.
    [18] MARCO U E, MIRIAM PT, PAQUI B, et al. Biodegradation of the analgesic naproxen by Trametes versicolor and identification of intermediates using HPLC-DAD-MS and NMR[J]. Bioresource Technology, 2010, 101(7):2159-2166.
    [19] MARCO U E, AEANDA E, CAMINAL G, et al. Induction of hydroxyl radical production in Trametes versicolor to degrade recalcitrant chlorinated hydrocarbons[J]. Bioresource Technology, 2009, 100(23):5757-5762.
    [20] FONO L J, SEDLAK D L. Use of the chiral pharmaceutical propranolol to identify sewage discharges into surface waters[J]. Environmental Science & Technology, 2005, 39(23):9244-9252.
    [21] LUOY, GUO W, NGO H H, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment[J]. Science of the Total Environment, 2014, 473-474:619-641.
    [22] TIXIER, CELINE, SINGER H P, et al. Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters[J]. Environmental Science & Technology, 2003, 37(6):1061-1068.
    [23] SUZUKI T, KOSUGI Y, HOSAKA M, et al. Occurrence and behavior of the chiral anti-inflammatory drug naproxen in an aquatic environment[J]. Environmental Toxicology & Chemistry, 2015, 33(12):2671-2678.
    [24] SUGAWARAY, FUJIHARA M, MIURA Y, et al. Studies on the fate of naproxen.Ⅱ. Metabolic fate in various animals and man[J]. Chemical & Pharmaceutical Bulletin, 1978, 26(11):3312-3321.
    [25] PACKER J L, WERNER J J, LATCH D E, et al. Photochemical fate of pharmaceuticals in the environment:Naproxen, diclofenac, clofibric acid, and ibuprofen[J]. Aquatic Sciences-Research Across Boundaries, 2003, 65(4):342-351.
    [26] FONE L J, SEDLAK D L. Use of the chiral pharmaceutical propranolol to identify sewage discharges into surface waters[J]. Environmental Science & Technology, 2005, 39(23):9244-9252.
    [27] ROBERTL.Comments on "Chiral pharmaceuticals:Environment sources, potential human health impacts,remediation technologies and future perspective"[J]. Environment International,2019,122:412-415.
    [28] 刘瑞霞, 李佳熹, 刘晓玲. 环境介质中手性药物对映体分离分析及环境行为研究进展[J]. 环境工程学报, 2017,11(6):3341-3352.

    LIU R X,LI J X,LIU X L. Research progress on separation, analysis and environmental behavior ofchiral pharmaceutical enantiomers in environmental matrix[J]. Chinese Journal of Environmental Engineering, 2017,11(6):3341-3352(in Chinese).

    [29] LI P, SONE Y, YU S,et al. The effect of hydrodynamic cavitation on Microcystis aeruginosa:Physicaland chemical factors[J]. Chemosphere, 2015, 136:245-251.
    [30] FRANC J P, MICHEL J M. Fundamentals of cavitation[J]. Fluid Mechanics & Its Applications, 2004, 76(11):1-46.
    [31] LI P, SONG Y, YU S. Removal of microcystis aeruginosa using hydrodynamic cavitation:Performance and mechanisms[J]. Water Research, 2014, 62(Complete):241-248.
    [32] CRAVOTTOG, CINTAS P. Power ultrasound in organic synthesis:Moving cavitational chemistry from academia to innovative and large-scale applications[J]. Chemical Society Reviews, 2006, 35(2):180-196.
    [33] TAOY, CAI J, HUAI X, et al. Application of hydrodynamic cavitation to wastewater treatment[J]. Chemical Engineering & Technology, 2016, 39(8):1363-1376.
    [34] TAOY, CAI J, HUAI X, et al. A novel antibiotic wastewater degradation technique combining cavitating jets impingement with multiple synergetic methods[J]. Ultrasonics Sonochemistry, 2018, 44:36-44.
    [35] GOGATE P R.Cavitational reactors for process intensification of chemical processing applications:A critical review[J]. Chemical Engineering and Processing, 2008, 47(4):515-527.
    [36] CINTAS P, LUCHE J L. Green chemistry. The sonochemical approach[J]. Green Chemistry, 1999, 1(3):115-125.
    [37] CAI M Q, GUAN Y X, YAO S J, et al. Supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer (SAA-HCM) for micronization of levofloxacin hydrochloride[J]. The Journal of Supercritical Fluids, 2008, 43(3):524-534.
    [38] HUTT A J, CALDWELL J. The metabolic chiral inversion of 2-arylpropanoic acids:A novel route with pharmacological consequences[J]. Pharm Pharmacol, 1983,35:693-704.
    [39] THANEKAR P, GARG S, GOGATE P R.Hybrid treatment strategies based on hydrodynamic cavitation, advanced oxidation processes, and aerobic oxidation for efficient removal of naproxen[J]. Industrial & Engineering Chemistry Research,2019,59:4058-4070.
    [40] GOGATE P R. Cavitation:An auxiliary technique in wastewater treatment schemes[J]. Advances in Environmental Research, 2002(3):335-358.
    [41] MATEVZ D,TJASA G B,ION G, et al.Use of hydrodynamic cavitation in (waste)water treatment[J]. Ultrasonics Sonochemistry,2016,29:577-588.
    [42] MARINELLA F, ASPERGERD, KANTIANI L, et al. Assessment of the acute toxicity of triclosan and methyl triclosan in wastewater based on the bioluminescence inhibition of vibriofischeri[J]. Analytical & Bioanalytical Chemistry, 2008, 390(8):1999-2007.
    [43] ZUPANC M, KOSJEK T, PETKOVEK M, et al. Shear-induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater[J]. Ultrasonics Sonochemistry, 2014, 21(3):1213-1221.
    [44] MUSMARRA D,PRISCIANDARO M, CAPOCELLI M, et al. Degradation of ibuprofen by hydrodynamic cavitation:Reaction pathways and effect of operational parameters[J]. Ultrasonics Sonochemistry, 2016, 29:76-83.
    [45] WANG Z, SRIVASTAVA V, AMBAT I,et al. Degradation of Ibuprofen by UV-LED/catalytic advanced oxidation process[J]. Journal of Water Process Engineering, 2019, 31:1-9.
    [46] ARANAMI K, READMAN J W. Photolytic Degradation of triclosan in freshwater and seawater[J]. Chemosphere,2007, 66:1052-1056.
    [47] BAGAL M V, GOGATE P R. Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis[J]. Ultrasonics Sonochemistry, 2014, 21(3):1035-1043.
    [48] OLLER S, MALATO J A, SANCHEZ P, et al.Combination of advanced oxidation processes and biologicaltreatments for wastewater decontamination:A review[J]. Science of the Total Environment, 2011,409(20):4141-4166.
  • 加载中
计量
  • 文章访问数:  2355
  • HTML全文浏览数:  2355
  • PDF下载数:  58
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-20

水力空化(HC)联合高级氧化技术去除典型手性药物的研究进展

    通讯作者: 杨亚红, E-mail: yangyahong@lut.cn
  • 1. 兰州理工大学, 兰州, 730050;
  • 2. 同济大学, 上海, 200092
基金项目:

建工七七基金(TJ2017-G01)资助.

摘要: 普通药物中大部分是具有一对对映异构体手性结构的手性药物(CDs),且CDs作为一种新型微污染物在水体中被频繁发现.该药物因其种类和组成的不同,内部的对映异构体可能会表现出特异性,如体现在毒性、与蛋白质结合吸收以及在河流中自然衰减率等方面.而高级氧化法(AOPs),如空化(水力空化和声空化)、Fenton法和光催化法等技术手段,在去除CDs方面已表现出较大潜力.本研究基于对映体结构,全面梳理了CDs的性质、来源及对人类健康的影响,拟探究水环境中典型CDs的手性反转和药理学立体选择性特征,并归纳了水力空化方法联合AOP技术对萘普生、布洛芬等典型CDs去除效果特点,重点讨论了该方法作用机理与其利弊,探究最优适用条件,最终归纳出目前CDs分离分析技术的瓶颈及未来环境中CDs去除技术的研究趋势.

English Abstract

参考文献 (48)

目录

/

返回文章
返回