桑树(Morus alba L.)原位修复某尾矿区重金属污染土壤
In-situ phytoremediation of heavy metal-contaminated soil by Morus alba L. near a mine tailing
-
摘要: 木本植物具有根系发达、生物量大、适应性强等特点,可广泛用于重金属污染土壤修复.本文通过5年的田间修复试验,研究了桑树(Morus alba L.)对污染土壤中重金属的累积和分布特征、土壤中重金属和营养元素有效性含量的变化,来探讨桑树修复某尾矿区污染土壤中Mn、Zn和Cd等重金属的效果.研究结果表明,桑树生物量大,可用于重金属污染土壤的生态修复与景观恢复.田间种植5年后,桑树整株干重每株可达4 kg.桑树对土壤中重金属具有一定的转运和累积能力,地上部分中Cd、Zn和Mn等重金属含量明显大于根部,尤其是叶片中重金属含量明显大于枝和主干中的含量.修复5年后,桑树地上部分Zn和Mn的累积总量可达3277.7 mg·100 m-2和2422.4 mg·100 m-2,且土壤中Mn和Zn含量分别从2192.5 mg·kg-1和103.2 mg·kg-1降低至1790.0 mg·kg-1和85.94 mg·kg-1,同时土壤有效态Mn和Zn分别显著(P<0.05)降低66.0%和28.6%.然而,桑树落叶中Cd、Zn和Mn含量分别可达0.36、64.5、189.2 mg·kg-1.因此,通过定期清除桑树落叶或刈割地上部分,可防止叶片中重金属对土壤造成二次污染,同时削减土壤中重金属含量.同时,经桑树修复5年后土壤中碱解氮、有效磷和速效钾含量均显著(P<0.05)降低,需定期补充相应氮、磷和钾肥来强化桑树修复尾矿区重金属污染土壤.Abstract: Woody plants have developed root system, large biomass production and strong adaptability, which can be widely used for heavy metal-contaminated soil remediation. Through 5 years in-situ phytoremediation experiment, the accumulation and distribution characteristics of heavy metals in Morus alba L. and the changes of total heavy metals and available nutrient elements contents in soil were conducted to study the phytoremediation effect of M. alba L. in a mining tailing area. The results indicated that M. alba L. had large biomass, which could be used for heavy metal-contaminated soil ecological remediation and landscape revegetation. The dry biomass of M. alba L. could reach up to 4 kg·plant-1 after 5 years cultivation in the field. Meanwhile, M. alba L. could effectively transport and accumulate heavy metals from the contaminated soil to some extent. The contents of heavy metals such as Cd, Zn, and Mn in the aboveground parts were significantly higher than those in the roots, particularly for metals in leaves were higher than those in branches and trunks. The accumulation amounts of Zn and Mn in the aboveground parts of M. alba L. could reach up to 3277.7 and 2422.4 mg·100 m-2 after 5 years remediation. Furthermore, total Mn and Zn content in soil decreased from 2192.5 mg·kg-1 to 1790.0 mg·kg-1 and 103.2 mg·kg-1 to 85.94 mg·kg-1, meanwhile available Mn and Zn in soil also significantly (P<0.05) decreased by 66.0% and 28.6%, respectively. However, the contents of Cd, Zn, and Mn in deciduous leaves could reach up to 0.36, 64.5, and 189.2 mg·kg-1, respectively. Therefore, regularly removing leaves or cutting the parts of aboveground could prevent secondary contamination from heavy metals in deciduous leaves, which could also reduce heavy metal contents in the contaminated soil. Simultaneously, the availabilities of nitrogen (N), phosphorus (P), and potassium (K) in contaminated soil were significantly (P<0.05) decreased after 5 years phytoremediation with M. alba L. Therefore, it is necessary to strengthen the potential of ecological remediation with M. alba L. in the tail-mining area by adding corresponding N, P and K fertilizers at regular periods.
-
Key words:
- Morus alba L. /
- heavy metal /
- contaminated soil /
- in-situ remediation /
- soil fertility
-
[1] HUANG B, GUO Z, TU W, et al. Geochemistry and ecological risk of metal(loid)s in overbank sediments near an abandoned lead/zinc mine in Central South China[J]. Environmental Earth Sciences,2018,77:68. [2] 陆金, 赵兴青, 黄健, 等. 铜陵狮子山矿区尾矿库及周边17种乡土植物重金属含量及富集特征[J]. 环境化学,2019,38(1):78-86. LU J, ZHAO X Q, HUANG J, et al. Heavy metal contents and enrichment characteristics of 17 species indigenous plants in the tailing surrounding in Shizishan, Tongling[J]. Environmental Chemistry,2019,38(1):78-86(in Chinese).
[3] 张永慧, 麻冰涓, 张东, 等. 南太行山山前平原工业园区土壤重金属污染特征及来源[J]. 环境化学,2017,36(8):1821-1830. ZHANG Y H, MA B J, ZHANG D, et al. Contamination and sources of heavy metals in the soils of industrial cluster in piedmont plain of South Taihang Mountain[J]. Environmental Chemistry,2017,36(8):1821-1830(in Chinese).
[4] XUE S, SHI L, WU C, et al. Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines[J]. Environmental Research,2017,156:23-30. [5] 曾鹏, 曹霞, 郭朝晖, 等. 珊瑚树(Viburnum odoratissinum)对污染土壤中镉的耐受和富集特征[J]. 生态学报,2017,37(19):6472-6479. ZENG P, CAO X, GUO Z H, et al. Tolerance and accumulation characteristics of Viburnum odoratissinum to cadmium in contaminated soil[J]. Acta Ecologica Sinica,2017,37(19):6472-6479(in Chinese).
[6] WANG L, JI B, HU Y, et al. A review on in situ phytoremediation of mine tailings[J]. Chemosphere,2017,184:594-600. [7] ZENG P, GUO Z, XIAO X, et al. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil[J]. Science of the Total Environment,2019,650:594-603. [8] 雒焕章, 南忠仁, 胡亚虎, 等. 不同螯合剂处理下杨树对土壤中Cd的吸收和富集效应[J]. 中国环境科学,2013,33(3):461-465. LUO H Z, NAN Z R, HU Y H, et al. Chelate-induced uptake and accumulation of Cd in soil by poplar (Populus bolleana Lauche)[J]. China Environmental Science,2013,33(3):461-465(in Chinese).
[9] 曾鹏, 曹霞, 郭朝晖, 等. Cd污染土壤景观修复植物筛选研究[J]. 农业环境科学学报,2016,35(4):691-698. ZENG P, CAO X, GUO Z H, et al. Potential of ornamental plants for remediating soil polluted with cadmium[J]. Journal of Agro-Environment Science,2016,35(4):691-698(in Chinese).
[10] ZENG P, GUO Z, CAO X, et al. Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium[J]. International Journal of Phytoremediation,2018,20(4):311-320. [11] ZENG P, GUO Z, XIAO X, et al. Response to cadmium and phytostabilization potential of Platycladus orientalis in contaminated soil[J]. International Journal of Phytoremediation,2018,20(13):1337-1345. [12] 曾鹏, 郭朝晖, 肖细元, 等. 构树修复对重金属污染土壤环境质量的影响[J]. 中国环境科学,2018,38(7):2639-2645. ZENG P, GUO Z H, XIAO X Y, et al. Effect of phytoremediation with Broussonetia papyrifera on the biological quality in soil contaminated with heavy metals[J]. China Environmental Science,2018,38(7):2639-2645(in Chinese).
[13] 刘佩琪, 陈奇伯, 邓志华, 等. 城市森林对大气中重金属的富集特征[J]. 环境化学,2017,36(2):265-273. LIU P Q, CHEN Q B, DENG Z H, et al. Enrichment of atmospheric heavy metals by urban forest[J]. Environmental Chemistry,2017,36(2):265-273(in Chinese).
[14] LUO Z, HE J, POLLE A, et al. Heavy metal accumulation and signal transduction in herbaceous and woody plants:Paving the way for enhancing phytoremediation efficiency[J]. Biotechnology Advances,2016,34(6):1131-1148. [15] 曾鹏, 郭朝晖, 肖细元, 等. 芦竹和木本植物间种修复重金属污染土壤[J]. 环境科学,2018,39(11):367-376. ZENG P, GUO Z H, XIAO X Y, et al. Intercropping Arundo donax with woody plants to remediate heavy metal-contaminated soil[J]. Environmental Science,2018,39(11):367-376(in Chinese).
[16] ZHOU L, ZHAO Y, WANG S. Cadmium transfer and detoxification mechanisms in a soil-mulberry-silkworm system:Phytoremediation potential[J]. Environmental Science and Pollution Research,2015,22:18031-18039. [17] 李庚飞, 程书强. 金矿周围树木对土壤重金属的吸收[J]. 东北林业大学学报,2013,41(1):55-58. LI G F, CHENG S Q. Study on absorption of heavy metals by several trees around the gold area[J]. Journal of Northeast Forestry University,2013,41(1):55-58(in Chinese).
[18] 潘雨齐, 黄仁志, 雷鸣, 等. 镉在桑树体内的迁移与分布特征研究[J]. 农业环境科学学报,2016,35(8):1480-1487. PAN Y Q, HUANG R Z, LEI M, et al. Transportation and distribution of Cd in different varieties of mulberry (Moms alba L.)[J]. Journal of Agro-Environment Science,2016,35(8):1480-1487(in Chinese).
[19] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,1999:12-196. LU R K. Soil and agricultural chemistry analysis[M]. Beijing:China Agriculture S&T Press,1999:12 -196(in Chinese).
[20] ZENG P, GUO Z, XIAO X, et al. Dynamic response of enzymatic activity and microbial community structure in metal(loid)-contaminated soil with tree-herb intercropping[J]. Geoderma,2019,345:5-16. [21] WOOLSON E A, AXLEY J H, KEARNEY P C. Correlation between available soil arsenic, estimated by six methods, and response of corn (Zea mays L.)[J]. Soil Science Society of America Journal,1971,35(1):101-105. [22] PULFORD I D, WATSON C. Phytoremediation of heavy metal-contaminated land by trees-A review[J]. Environment International, 2003,29(4):529-540. [23] 欧阳林男, 吴晓芙, 李芸, 等. 锰矿修复区泡桐与栾树生长与重金属积累特性[J]. 中国环境科学,2016,36(3):908-916. OUYANG L N, WU X F, LI Y, et al. Growth and heavy metal accumulation of Paulownia fortunei and Koelreuteria bipinnata in an ecological restoration site of the manganese-ore tailing[J]. China Environmental Science,2016,36(3):908-916(in Chinese).
[24] MERTENS J, VERVAEKE P, MEERS E, et al. Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment[J]. Environmental Science & Technology,2006,40(6):1962-1968. [25] 卢一富, 李云峰, 苗向前, 等. 微小铅锌矿区土壤和植物重金属污染特征及风险评价[J]. 生态与农村环境学报,2015,31(4):566-571. LU Y F, LI Y F, MIAO X Q, et al. Heavy metal pollution of soil and plants in areas of micro-sized lead-zinc mine and risk assessment[J]. Journal of Ecology and Rural Environment,2015,31(4):566-571(in Chinese).
[26] 施翔, 陈益泰, 吴天林, 等. 7个柳树无性系在Cu/Zn污染土壤中的生长及对Cu/Zn的吸收[J]. 中国环境科学,2010,30(12):1683-1689. SHI X, CHEN Y T, WU T L, et al. Plant growth and metal uptake by Seven Salix clones on Cu/Zn contaminated environment[J]. China Environmental Science,2010,30(12):1683-1689(in Chinese).
[27] 张兴, 王冶, 揭雨成, 等. 桑树对矿区土壤中重金属的原位去除效应研究[J]. 中国农学通报,2012,28(7):59-63. ZHANG X, WANG Y, JIE Y C, et al. Effect of heavy metal home position elimination on the mulberry in mining area soil[J]. Chinese Agricultural Science Bulletin,2012,28(7):59-63(in Chinese).
[28] 陈朝明, 龚惠群, 王凯荣, 等. 桑-蚕系统中镉的吸收、累积与迁移[J]. 生态学报,1999,19(5):664-669. CHEN C M, GONG H Q, WANG K R, et al. The absorption, accumulation and migration of cadmium in the system of soil mulberry and silkworm[J]. Acta Ecologica Sinica,1999,19(5):664-669(in Chinese).
[29] WAN X, LEI M, CHEN T, et al. Safe utilization of heavy-metal-contaminated farmland by mulberry tree cultivation and silk production[J]. Science of the Total Environment,2017,599-600:1867-1873. [30] 施翔, 陈益泰, 王树凤, 等. 3种木本植物在铅锌和铜矿砂中的生长及对重金属的吸收[J]. 生态学报,2011,31(7):1818-1826. SHI X, CHEN Y T, WANG S F, et al. Growth and metal uptake of three woody species in lead/zinc and copper mine tailing[J]. Acta Ecologica Sinica,2011,31(7):1818-1826(in Chinese).
[31] KANG W, BAO J, ZHENG J, et al. Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China[J]. International Journal of Phytoremediation,2018,20(1):1-7. [32] 刘孝利, 曾昭霞, 铁柏清, 等. 几种修复措施对Cd淋失及土壤剖面运移影响[J]. 环境科学,2016,37(2):734-739. LIU X L, ZENG Z X, TIE B Q, et al. Cd runoff load and soil profile movement after implementation of some typical contaminated agricultural soil remediation strategies[J]. Environmental Science,2016,37(2):734-739(in Chinese).
[33] 郭朝晖, 廖柏寒, 黄昌勇. 酸雨中SO42-、NO3-、Ca2+、NH4+对红壤中重金属的影响[J]. 中国环境科学,2002,22(1):6-10. GUO Z H, LIAO B H, HUANG C Y. Effects of SO42-, NO3-, Ca2+ and NH4+ of acid rain on the heavy metals in red soils[J]. China Environmental Science,2002,22(1):6-10(in Chinese).
[34] 张晓斌, 占新华, 周立祥, 等. 小麦/苜蓿套作条件下菲污染土壤理化性质的动态变化[J]. 环境科学,2011,32(5):1462-1470. ZHANG X B, ZHAN X H, ZHOU L X, et al. Dynamic changes of physicochemical properties in phenanthrene-contaminated soil under wheat and clover intercropping[J]. Environmental Science,2011,32(5):1462-1470(in Chinese).
[35] ANTONIADIS V, LEVIZOU E, SHAHEEN S M, et al. Trace elements in the soil-plant interface:Phytoavailability, translocation, and phytoremediation-A review[J]. Earth-Science Reviews,2017,171:621-645. [36] 李影, 王友保. 蜈蚣草生长对其根际铜尾矿土壤酶活性的影响[J]. 生态与农村环境学报,2011,27(2):75-80. LI Y, WANG Y B. Effects of growth of Pteris vittata on enzyme activities in rhizosphere soil of copper mining tailing[J]. Journal of Ecology and Rural Environment,2011,27(2):75-80(in Chinese).
[37] 苗旭锋, 肖细元, 郭朝晖, 等. 矿冶区重金属污染土壤肥力特征及生态修复潜力分析[J]. 环境科学与技术,2010,33(7):115-119. MIAO X F, XIAO X Y, GUO Z H, et al. Fertility characteristics and ecological restoration potential analysis for metal contaminated soils from vicinity of typical mining and smelting areas in Hunan province[J]. Environmental Science & Technology,2010,33(7):115-119(in Chinese).
计量
- 文章访问数: 2277
- HTML全文浏览数: 2277
- PDF下载数: 74
- 施引文献: 0