粘土岩对铀(Ⅵ)的吸附性能
Adsorption mechanism of uranium(Ⅵ) by clay rock
-
摘要: 以内蒙古阿拉善粘土岩为原料,采用静态吸附的方法,研究了不同因素对吸附铀(Ⅵ)效果的影响,通过吸附量和吸附率对结果进行分析.结果表明,粘土岩对铀(Ⅵ)的吸附效果较好,10 h就达到了平衡;在铀(Ⅵ)的最佳初始浓度为40 μg·mL-1时,吸附率达到最大;不同离子的影响不同,阳离子中,Mg2+的影响最大,Na+和K+几乎没影响,阴离子中,CO32-和HCO3-的影响最大,其次是SO42-,而NO3-基本没有影响;最佳固液比为1:40;吸附率和吸附量都随腐殖酸浓度的升高而减小;pH对吸附的影响较大,最佳pH值为6;吸附率和吸附量都随温度的升高而增大.Freundlich等温吸附模型较Langmuir能更好的拟合吸附过程.Abstract: Using the Alashan clay rock in Inner Mongolia as the raw material, the static adsorption method was used to study the influence of different factors on the adsorption of uranium (Ⅵ), and the results were analyzed by adsorption amount and adsorption rate. The results indicated that the clay rock adsorbed uranium (Ⅵ) well, and the equilibrium reached within 10 h. The optimum initial concentration of uranium (Ⅵ) was 40 μg·mL-1, and the adsorption rate reached the maximum. Different ions had different effects. Among the cations, Mg2+ had the greatest influence, Na+ and K+ had almost no effect. Among the anions, CO32- and HCO3- had the greatest influence, followed by SO42-, and NO3- had little effect. The optimum solid-liquid ratio was 1:40. Both adsorption rate and adsorption amount decreased with the increase of the concentration of humic acid. pH had a greater influence on the adsorption, and the optimal pH was 6. The adsorption rate and the adsorption amount increased with the increase of temperature. The Freundlich isotherm adsorption model fit the adsorption process better than Langmuir.
-
Key words:
- clay rock /
- U(Ⅵ) /
- adsorption mechanism /
- thermodynamic model
-
-
[1] MAO C L, LING B K, PENG Z, et al. Porous wood carbon monolith for high-performance supercapacitors[J]. Electrochimica Acta, 2012, 60:443-448. [2] 孟晋, 王洪明, 陈儒庆, 等.用离子交换法从某铀钼矿浸出液中回收与分离铀钼的研究[J].铀矿冶, 2008, 27(4):173-177. MENG J, WANG H M, CHEN R Q, et al. Study on recovery and separation of uranium and molybdenum from a uranium-molybdenum ore leaching solution by ion exchange method[J]. Uranium Mining and Metallurgy, 2008, 27(4):173-177(in Chinese).
[3] 魏广芝, 徐乐昌.低浓度含铀废水的处理技术及其研究进展[J].铀矿冶, 2007, 26(2):90-95. WEIG Z, XU LC. Treatment technology and research progress of low concentration uranium containing wastewater[J]. Uranium Mining and Metallurgy, 2007, 26(2):90-95(in Chinese).
[4] 朱宁波, 赵晓, 赵达慧.高分子铀吸附材料的研究进展[J].高分子通报, 2015(9):87-99. ZHU N B, ZHAO X, ZHAO D H. Research progress in polymeric uranium adsorbent materials[J]. Polymer Bulletin, 2015 (9):87-99(in Chinese).
[5] 刘泽萍, 刘海燕.吸附法从水体中去除铀的研究和发展[J].江西化工, 2019, (2):73-77. LIU Z P, LIU H Y. Research and development of removal of uranium from water by adsorption method[J]. Jiangxi Chemical Industry, 2019 , (2):73-77(in Chinese).
[6] WANG G H, WANG X G, CHAI X J, et al. Adsorption of uranium (Ⅵ) from aqueous solution on calcined and acid-activated kaolin[J]. Applied Clay Science, 2010, 47(3/4):448-451. [7] 黄彬, 陈泉水, 罗太安, 等.用改性膨润土吸附处理含铀(Ⅵ)废水试验研究[J].湿法冶金, 2018,37(2):128-134. HUANG B, CHEN Q S, LUO T A, et al. Experimental study on adsorption of uranium(Ⅵ)-containing wastewater by modified bentonite[J]. Journal of Hydrometallurgy, 2018, 37(2):128-134(in Chinese).
[8] 崔瑞萍, 李义连, 景晨.伊利石对水溶液中低浓度铀的吸附[J].环境化学, 2015, 34(2):314-320. CUI R P, LI Y L, JING C. Adsorption of low concentration uranium in aqueous solution by illite[J]. Environmental Chemistry, 2015, 34(2):314-320(in Chinese).
[9] 胡海洋.塔木素地区粘土岩吸附特性研究[J].甘肃科技, 2014, 30(17):51-52. HU H Y. Study on adsorption characteristics of clay rock in Tamusu Area[J]. Gansu Science and Technology, 2014, 30(17):51-52(in Chinese).
[10] 马腾, 王焰新, 郝振纯.粘土对地下水中U(Ⅵ)的吸附作用及其污染控制研究[J].华东地质学院学报, 2001, 24(3):181-185. MA T, WANG Y X, HAO Z C. Study on the adsorption of U(Ⅵ) in groundwater by clay and its pollution control[J]. Journal of East China Geological Institute, 2001, 24(3):181-185(in Chinese).
[11] 李华. 尾矿库中铀在粘土中的吸附及迁移规律研究[D].衡阳:南华大学, 2014. LI H. Adsorption and migration of uranium in clay in tailings pond[D]. Hengyang:Nanhua University, 2014(in Chinese). [12] 王长轩, 刘晓东, 刘平辉.高放废物地质处置库粘土岩场址研究现状[J].辐射防护, 2008(5):310-316. WANG C X, LIU X D, LIU P H. Research status of clay rock sites in geological disposal of high level radioactive waste[J]. Radiation Protection, 2008 (5):310-316(in Chinese).
[13] 杜作勇, 王彦惠, 李东瑞, 等.膨润土对U(Ⅵ)的吸附机理研究[J].核技术, 2019, 42(2):22-29. DU Z Y, WANG Y H, LI D R, et al. Study on the adsorption mechanism of bentonite for U(Ⅵ)[J]. Nuclear Techniques, 2019, 42(2):22-29(in Chinese).
[14] WANG Z M, ZACHARA J M, BOILY J F, et al. Determining individual mineral contributions to U(Ⅵ) adsorption in a contaminated aquifer sediment:A fluorescence spectroscopy study[J]. Geochimica Et Cosmochimica Acta, 2011, 75(10):2965-2979. [15] 李小燕, 张明, 刘义保, 等.离子强度、阴阳离子和腐殖酸对纳米零价铁去除溶液中U(Ⅵ)的影响[J].中国有色金属学报, 2015, 25(12):3505-3512. LI X Y, ZHANG M, LIU Y B, et al.Effect of ionic strength, anion and cation and humic acid on U(Ⅵ) in nano-zero-valent iron removal solution[J]. The Chinese Journal of Nonferrous Metals,2015, 25(12):3505-3512(in Chinese).
[16] 朱锐之, 李力力, 朱留超, 等.微陶材料对铀的吸附特性[J].核化学与放射化学, 2017, 39(5):377-384. ZHU R Z, LI L L, ZHU L C, et al. Adsorption characteristics of uranium by microceramic materials[J].Nuclear Chemistry and Radiochemistry, 2017, 39(5):377-384(in Chinese).
[17] 童克展.氧化石墨烯/膨润土复合材料对废水中铀(Ⅵ)的吸附试验研究[D].衡阳:南华大学, 2018. TONG K Z. Adsorption of uranium(Ⅵ) in wastewater by graphene oxide/bentonite composites[D]. Hengyang:Nanhua University, 2018(in Chinese). [18] 肖益群, 夏良树, 李瑞瑞, 等.改性稻杆吸附U(Ⅵ)的行为和机理研究[J].原子能科学技术, 2015, 49(12):2130-2137. XIAO Y Q, XIA L S, LI R R, et al. Behavior and mechanism of adsorption of U(Ⅵ) on modified rice straw[J]. Atomic Energy Science and Technology, 2015, 49(12):2130-2137(in Chinese).
[19] OCIŃSKI DANIEL, JACUKOWICZ-SOBALA I, KOCIOEK-BALAWEJDER E. Alginate beads containing water treatment residuals for arsenic removal from water-formation and adsorption studies[J]. Environmental Science and Pollution Research, 2016, 23(24):24527-24539. -

计量
- 文章访问数: 2249
- HTML全文浏览数: 2249
- PDF下载数: 111
- 施引文献: 0