去除水中氧化性污染物的新工艺-氢基质膜生物膜反应器(MBfR)

张鑫, 黄李金鸿, 黄万抚, 丁伟, 李睿涵, 李柳. 去除水中氧化性污染物的新工艺-氢基质膜生物膜反应器(MBfR)[J]. 环境化学, 2020, (5): 1307-1320. doi: 10.7524/j.issn.0254-6108.2019072607
引用本文: 张鑫, 黄李金鸿, 黄万抚, 丁伟, 李睿涵, 李柳. 去除水中氧化性污染物的新工艺-氢基质膜生物膜反应器(MBfR)[J]. 环境化学, 2020, (5): 1307-1320. doi: 10.7524/j.issn.0254-6108.2019072607
ZHANG Xin, HUANG Lijinhong, HUANG Wanfu, DING Wei, LI Ruihan, LI Liu. A new process for removing oxidized pollutants from water: Hydrogen-based membrane biofilm reactor[J]. Environmental Chemistry, 2020, (5): 1307-1320. doi: 10.7524/j.issn.0254-6108.2019072607
Citation: ZHANG Xin, HUANG Lijinhong, HUANG Wanfu, DING Wei, LI Ruihan, LI Liu. A new process for removing oxidized pollutants from water: Hydrogen-based membrane biofilm reactor[J]. Environmental Chemistry, 2020, (5): 1307-1320. doi: 10.7524/j.issn.0254-6108.2019072607

去除水中氧化性污染物的新工艺-氢基质膜生物膜反应器(MBfR)

    通讯作者: 黄万抚, E-mail: sim2008@sina.com
  • 基金项目:

    国家自然科学基金(41662004)资助.

A new process for removing oxidized pollutants from water: Hydrogen-based membrane biofilm reactor

    Corresponding author: HUANG Wanfu, sim2008@sina.com
  • Fund Project: Supported by the National Natural Science Foundation of China(41662004).
  • 摘要: 水中存在的氧化性污染物不仅对生态环境造成危害,还严重威胁人类健康.传统处理工艺具有能耗大,成本高和易产生二次污染等缺点.为了克服上述缺点并达到高效安全的处理效果,将无泡曝气技术和生物膜技术结合起来,研制出了一种完全区别于生物膜反应器的新兴水处理技术——氢基质膜生物膜反应器(Hydrogen-based membrane biofilm reactor,MBfR).因其具有清洁环保,成本低和高效处理氧化性污染物等优点,成为了大家关注的热点.本文论述了氧化性污染物(无机阴离子、重金属离子、有机化合物)的来源及危害,MBfR的发展简史、工作原理、电子供体的选择以及MBfR去除氧化性污染物的实验效果,并总结了影响MBfR的主要因素以及如何控制这些因素,从而使其更好地工业化应用,最后阐述了MBfR未来的研究方向主要包括膜丝的改进、生物膜的控制、优化反应器结构和操作条件,为后续MBfR的相关研究提供一系列有效的参考.
  • 加载中
  • [1] GHAFARI S, HASAN M, AROUA M K. Bio-electrochemical removal of nitrate from water and wastewater——a review[J]. Bioresource Technology,2008,99(10):3965-3974.
    [2] 冉雅郡, 周云, 杨潇潇, 等. MBfR处理水中氧化性污染物的研究进展[J].中国环境科学,2018,38(12):4484-4493.

    RAN Y J, ZHOU Y, YANG X X, et al. Research process of the hydrogen-based membrane biofilm reactor on the treatment of oxidized pollutants in water[J]. China Environmental Science,2018,38(12):4484-4493(in Chinese).

    [3] 林华, 李海翔, 游少鸿, 等. 饮用水中氧化性物质的危害及处理技术研究进展[J].工业安全与环保,2015,41(5):79-81.

    LIN H, LI H X, YOU S H, et al. Risks of oxidized substances in drinking water and research progress of treatment technologies[J]. Industrial Safety and Environmental Protection,2015,41(5):79-81(in Chinese).

    [4] 蒋敏敏, 张学洪, 李海翔. 氢基质生物膜反应器在饮用水处理中的研究进展[J].净水技术,2015,34(Z1):23-26.

    JIANG M M, ZHANG X H, LI H X. Research progress of hydrogen-based membrane biofilm reactor (MBfR) for drinking water treatment[J]. Water Purification Technology,2015,34(Z1):23-26(in Chinese).

    [5] RITTMANN B E. Biofilms, active substrata, and me[J]. Water Research,2018,132:135-145.
    [6] CRESPO J, VELIZAROV S, REIS M. Membrane bioreactors forthe removal of anionic micropollutants from drinking water[J]. Current Opinion in Biotechnology,2004, 15(5):463-468.
    [7] LEE K, RITTMANN B E. A novel hollow-fibre membrane biofilm reactor for autohydrogenotrophic denitrification of drinking water[J]. Water Science and Technology,2000,41(4-5):219-226.
    [8] WU J L,YIN Y N,WANG J L. Hydrogen-based membrane biofilm reactors for nitrate removal from water and wastewater[J]. International Journal of Hydrogen Energy,2018,43(1):1-15.
    [9] RITTMANN B E, NERENBERG R, LEE K C, et al. Hydrogen-based hollow-fiber membrane biofilm reactor (MBfR) for removing oxidized contaminants[J]. Water Science and Technology:Water Supply,2004,4(1):127-133.
    [10] RITTMANN B E. The membrane biofilm reactor is a versatile platform for water and wastewater treatment[J]. Environmental Engineering Research,2007,12(4):157-175.
    [11] PANKHANIA M. Hollow fibre bioreactor for wastewater treatment using bubbleless membrane aeration[J]. Water Research,1994,28(10):2233-2236.
    [12] 李海翔, 徐晓茵, 梁郡, 等. 氢基质自养微生物还原降解水中对氯硝基苯的研究[J].环境科学学报,2012,32(10):2394-2401.

    LI H X, XU X Y, LIANG J, et al. Study on reductive degradation of para-chloronitrobenzene in water by autohydrogenotrophic microorganisms[J]. Acta Scientiae Circumstantiae,2012,32(10):2394-2401(in Chinese).

    [13] XIA S Q, ZHONG F H, ZHANG Y H, et al. Bio-reduction of nitrate from groundwater using a hydrogen-based membrane biofilm reactor[J].Journal of Environmental Sciences,2010,22(2):257-262.
    [14] ONTIVEROS-VALENCIA A, TANG Y, KRAJMALNIK B R, et al. Managing the interactions between sulfate-and perchlorate-reducing bacteria when using hydrogen-Fed biofilms to treat a groundwater with a high perchlorate concentration[J]. Water Research,2014,55:215-224.
    [15] CHUNG J, RYU H, MORTEZA A, et al. Community structure and function in a H2-based membrane biofilm reactor capable of bioreduction of selenate and chromate[J]. Applied Microbiology and Biotechnology,2006,72(6):1330-1339.
    [16] DOWNING L S, NERENBERG R. Kinetics of microbial bromate reduction in a hydrogen-oxidizing, denitrifying biofilm reactor[J]. Biotechnology and Bioengineering,2007,98(3):543-550.
    [17] XIA S Q, ZHANG Z Q, ZHONG F H, et al. High efficiency removal of 2-chlorophenol from drinking water by a hydrogen-based polyvinyl chloride membrane biofilm reactor[J]. Journal of Hazardous Materials,2011,186(2-3):1367-1373.
    [18] KARATAS S, HASAR H, TASKAN E, et al. Bio-reduction of tetrachloroethen using a H2-based membrane biofilm reactor and community fingerprinting[J]. Water Research,2014,58:21-28.
    [19] TYAGI S, RAWTANI D, KHATRI N, et al. Strategies for Nitrate removal from aqueous environment using Nanotechnology:A Review[J]. Journal of Water Process Engineering,2018,21:84-95.
    [20] ZHAI S, ZHAO Y, JI M, et al. Simultaneous removal of nitrate and chromate in groundwater by a spiral fiber based biofilm reactor[J]. Bioresource Technology,2017,232:278-284.
    [21] GU B, GE Y, CHANG S X, et al. Nitrate in groundwater of China:Sources and driving forces[J]. Global Environmental Change,2013,23(5):1112-1121.
    [22] FEWTRELL L. Drinking-water nitrate, methemoglobinemia, and global burden of disease:A discussion[J]. Environmental Health Perspectives,2004,112:1371-1374.
    [23] CHIU Y, LEE P, WI-AFEDZI T, et al. Elimination of bromate from water using aluminum beverage cans via catalytic reduction and adsorption[J]. Journal of Colloid and Interface Science,2018,532:416-425.
    [24] CHEN F, YANG Q, ZHONG Y, et al. Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (RGO) jointly modified BiVO4 under visible light irradiation[J]. Water Research,2016,101:555-563.
    [25] 伊胜楠,史嘉璐,龙超, 等. 饮用水中溴酸盐控制方法和去除技术研究进展[J]. 环境保护科学,2014,40(1):22-27.

    YI S N, SHI J L, LONG C, et al. Study progress in control methods and removal technologiesof bromate in drinking water[J].Environmental Protection Science,2014,40(1):22-27(in Chinese).

    [26] LIN K A, LIN C. Simultaneous reductive and adsorptive removal of bromate from water using acid-washed zero-valent aluminum (ZVAl)[J]. Chemical Engineering Journal,2016,297:19-25.
    [27] LIU K, LU J, JI Y. Formation of brominated disinfection by-products and bromate in cobalt catalyzed peroxymonosulfate oxidation of phenol[J]. Water Research,2015,84:1-7.
    [28] LI Z, CHEN Z, XIANG Y, et al. Bromate formation in bromide-containing water through the cobalt-mediated activation of peroxymonosulfate[J]. Water Research,2015,83:132-140.
    [29] AHN C H, OH H, KI D, et al. Bacterial biofilm-community selection during autohydrogenotrophic reduction of nitrate and perchlorate in ion-exchange brine[J]. Applied Microbiology and Biotechnology,2009,81(6):1169-1177.
    [30] PLEUS R C, COREY L M. Environmental exposure to perchlorate:A review of toxicology and human health[J]. Toxicology and Applied Pharmacology,2018,358:102-109.
    [31] VEGA M, NERENBERG R, VARGAS I T. Perchlorate contamination in chile:Legacy, challenges, and potential solutions[J]. Environmental Research,2018,164:316-326.
    [32] WU M, LUO J, HU S, et al. Perchlorate bio-reduction in a methane-based membrane biofilm reactor in the presence and absence of oxygen[J]. Water Research,2019,157:572-578.
    [33] ZERAATKAR M A, ESMAEILKHANIAN E, SHAKOURIAN-FARD M. Immobilizing magnetic glutaraldehyde cross-linked chitosan on graphene oxide and nitrogen-doped graphene oxide as well-dispersible adsorbents for chromate removal from aqueous solutions[J]. International Journal of Biological Macromolecules,2019,128:61-73.
    [34] PENG L, LIU Y, GAO S, et al. Evaluating simultaneous chromate and nitrate reduction during microbial denitrification processes[J]. Water Research,2016,89:1-8.
    [35] THATHSARA S K T, COORAY A T, RATNAWEERA D R, et al. A novel tri-metal composite incorporated polyacrylamide hybrid material for the removal of arsenate, chromate and fluoride from aqueous media[J]. Environmental Technology & Innovation,2019,14:100353.
    [36] JACOBSON A T, FAN M. Evaluation of natural goethite on the removal of arsenate and selenite from water[J]. Journal of Environmental Sciences,2019,76:133-141.
    [37] JACUKOWICZ-SOBALA I, OCINSKI D, MAZUR P, et al. Evaluation of hybrid anion exchanger containing cupric oxide for As(Ⅲ) removal from water[J]. Journal of Hazardous Materials,2019,370:117-125.
    [38] DI I E, COLOMBO C, CHENG Z, et al. Characterization of magnetite nanoparticles synthetized from Fe(Ⅱ)/nitrate solutions for arsenic removal from water[J]. Journal of Environmental Chemical Engineering,2019,7(2):102986.
    [39] RAHMANI A R, JORFI S, ASGARI G, et al. A comparative study on the removal of pentachlorophenol using copper-impregnated pumice and zeolite[J]. Journal of Environmental Chemical Engineering,2018,6(2):3342-3348.
    [40] MA H, ZHAO L, GUO L, et al. Roles of reactive oxygen species (ROS) in the photocatalytic degradation of pentachlorophenol and its main toxic intermediates by TiO2/UV[J]. Journal of Hazardous Materials,2019,369:719-726.
    [41] YE Z, SIRES I, ZHANG H, et al. Mineralization of pentachlorophenol by ferrioxalate-assisted solar photo-Fenton process at mild pH[J]. Chemosphere,2019,217:475-482.
    [42] TSOUFIS T, KATSAROS F, KOOI B J, et al. Halloysite nanotube-magnetic iron oxide nanoparticle hybrids for the rapid catalytic decomposition of pentachlorophenol[J]. Chemical Engineering Journal,2017,313:466-474.
    [43] SCHAFFER R B, LUDZACK F J, ETTINGER M B, Sewage treatment by oxygenation through permeable plastic films[J]. Journal of the Water Pollution Control Federation,1960,32(9):939-941.
    [44] YEH S J, JENKINS C R. Pure oxygen fixed film reactor[J]. Journal of the Environmental Engineering Division,1978,104(4):611-623.
    [45] ONISHI H, NUMAZAWA R, TAKEDA H. Process and apparatus for wastewater treatment[P]. US Patent:US 4181604,1980.
    [46] BRINDLE K, STEPHENSON T, SEMMENS M J. Nitrification and oxygen utilisation in a membrane aeration bioreactor[J]. Journal of Membrane Science,1998,144(1-2):197-209.
    [47] EOIN S, EOIN C. Membrane-aerated biofilms for high rate biotreatment:Performance appraisal, engineering principles, scale-up, and development requirements[J]. Environmental Science & Technology,2008,42(6):1833-1844.
    [48] NERENBERG R. The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process[J]. Current Opinion in Biotechnology,2016,38:131-136.
    [49] LUP Y, CHEN R, WEN L, et al. Complete perchlorate reduction using methane as the sole electron donor and carbon source[J]. Environmental Science & Technology,2015,49(4):2341-2349.
    [50] SUN J, DAI X, PENG L, et al. A biofilm model for assessing perchlorate reduction in a methane-based membrane biofilm reactor[J]. Chemical Engineering Journal,2017,327:555-563.
    [51] ZHANG Y, ZHONG F, XIA S, et al. Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor[J]. Journal of Hazardous Materials,2009,170(1):203-209.
    [52] MARTIN K J, NERENBERG R. The membrane biofilm reactor (MBfR) for water and wastewater treatment:Principles, applications, and recent developments[J]. Bioresource Technology,2012,122:83-94.
    [53] SEMMENS M J, GULLIVER J S, ANDERSON A. An Analysis of bubble formation using microporous hollow fiber membranes[J]. Water Environment Research,1999,71(3):307-315.
    [54] NERENBERG R, RITTMANN B E. Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants[J]. Water Science and Technology,2004,49(11-12):223-230.
    [55] LEE K, RITTMANN B E. Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water[J]. Water Research,2002,36(8):2040-2052.
    [56] RITTMANN B E. The membrane biofilm reactor:The natural partnership of membranes and biofilm[J]. Water Science and Technology,2006,53(3):219-225.
    [57] LIAN J, TIAN X, LI Z, et al. The effects of different electron donors and electron acceptors on perchlorate reduction and bioelectricity generation in a microbial fuel cell[J]. International Journal of Hydrogen Energy, 2017,42(1):544-552.
    [58] CUI Z, MENG F, HONG J, et al. Effects of electron donors on the microbial reductive dechlorination of hexachlorocyclohexane and on the environment[J]. Journal of Bioscience and Bioengineering,2012,113(6):765-770.
    [59] HAN X, SCHULTZ L, ZHANG W, et al. Mineral formation during bacterial sulfate reduction in the presence of different electron donors and carbon sources[J]. Chemical Geology,2016,435:49-59.
    [60] GAO M, WANG S, REN Y, et al. Simultaneous removal of perchlorate and nitrate in a combined reactor of sulfur autotrophy and electrochemical hydrogen autotrophy[J]. Chemical Engineering Journal,2016,284:1008-1016.
    [61] PARK J Y, YOO Y J. Biological nitrate removal in industrial wastewater treatment:Which electron donor we can choose[J]. Applied Microbiology and Biotechnology,2009,82(3):415-429.
    [62] DI C F, PIROZZI F, LENS P N L, et al. Electron donors for autotrophic denitrification[J]. Chemical Engineering Journal,2019,362:922-937.
    [63] CUI M, CUI D, GAO L, et al. Azo dye decolorization in an up-flow bioelectrochemical reactor with domestic wastewater as a cost-effective yet highly efficient electron donor source[J]. Water Research,2016,105:520-526.
    [64] DISPENZA G, SERGI F, NAPOLI G, et al. Evaluation of hydrogen production cost in different real case studies[J]. Journal of Energy Storage,2019,24:100757.
    [65] BOLATJHAN K, KOSSALBAYEV B D, ZAYADAN B K, et al. Hydrogen production from phototrophic microorganisms:Reality and perspectives[J]. International Journal of Hydrogen Energy,2019,44(12):5799-5811.
    [66] RITTMANN B E, MCCARTY P L. Environmental Biotechnology:Principles and Applications[M].New York:McGraw-Hill, 2001:461-487.
    [67] REIJ M W, KEURENTJIES J T F, HARTMANS S. Membrane bioreactors for waste gas treatment[J]. Journal of Biotechnology,1998,59(3):155-167.
    [68] CASEY E, GLENNONB, HAMER G. Review of membrane aerated biofilm reactors[J]. Resources, Conservation and Recycling,1999,27(1-2):203-215.
    [69] VOSS M A, AHMED T, SEMMENS M J. Long-term performance of parallel-flow, bubbleless, hollow-fiber-membrane aerators[J]. Water Environment Research,1999,71(1):23-30.
    [70] TERADA A, YAMAMOTO T, HIBIYA K, et al. Enhancement of biofilm formation onto surface-modified hollow-fiber membranes and its application to a membrane-aerated biofilm reactor[J]. Water Science and Technology,2004,49(11-12):263-268.
    [71] HOU F, LI B, XING M, et al. Surface modification of PVDF hollow fiber membrane and its application in membrane aerated biofilm reactor (MABR)[J]. Bioresource Technology,2013,140:1-9.
    [72] LEE K, RITTMANN B E. Effects of pH and precipitation on autohydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor[J]. Water Research,2003,37(7):1551-1556.
    [73] ASSUNCAO A, MARTINS M, SILVA G, et al. Bromate removal by anaerobic bacterial community:Mechanism and phylogenetic characterization[J]. Journal of Hazardous Materials,2011,197:237-243.
    [74] ZHONG Y, YANG Q, FU G, et al. Denitrifying microbial community with the ability to bromate reduction in a rotating biofilm-electrode reactor[J]. Journal of Hazardous Materials,2018,342:150-157.
    [75] NERENBERG R, RITTMANN B E, NAJM I. Perchlorate reduction in a hydrogen-based membrane-biofilm reactor[J]. American Water Works Association,2002,94(11):103-114.
    [76] CHUNG J, RITTMANN B E, WRIGHT W F, et al. Simultaneous bio-reduction of nitrate, perchlorate, selenate, chromate, arsenate, and dibromochloropropane using a hydrogen-based membrane biofilm reactor[J]. Biodegradation,2007,18(2):199-209.
    [77] ZHAO H, VAN G S, TANG Y, et al. Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor[J]. Environmental Science & Technology,2011,45(23):10155-10162.
    [78] ZHAO H, OOTIVEROS-VALENCIA A, TANG Y, et al. Removal of multiple electron acceptors by pilot-scale, two-stage membrane biofilm reactors[J]. Water Research,2014,54:115-122.
    [79] RITTLE K A, DREVER J I, COLBERG P J S. Precipitation of arsenic during bacterial sulfate reduction[J]. Geomicrobiology Journal,1995,13(1):1-11.
    [80] NEWMAN D K, BEVERIDGE T J, MOREL F. Precipitation of arsenic trisulfide by desulfotomaculum auripigmentum[J]. Applied and Environmental Microbiology,1997,63(5):2022-2028.
    [81] CHUNG J, LI X, RITTMANN B E. Bio-reduction of arsenate using a hydrogen-based membrane biofilm reactor[J]. Chemosphere,2006,65(1):24-34.
    [82] VOGELS C M, JOHNSON M D. Arsenic remediation in drinking waters using ferrate and ferrous ions[M]. New Mexico Water Resources Reasearch Institute, New Mexico State University,1998.
    [83] LASPIDOU C S, RITTMANN B E. Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances[J]. Water Research,2004,38(14-15):3349-3361.
    [84] LANGNER H W, INSKEEP W P. Microbial reduction of arsenate in the presence of ferrihydrite[J]. Environmental Science & Technology,2000,34(15):3131-3136.
    [85] SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry,2002,17(5):517-568.
    [86] CHUNG J, NERENBERG R, RITTMANN B E. Bio-reduction of soluble chromate using a hydrogen-based membrane biofilm reactor[J]. Water Research,2006,40(8):1634-1642.
    [87] ZIEMNIAK S E, JONES M E, COMBS K E S. Solubility and phase behavior of Cr (Ⅲ) oxides in alkaline media at elevated temperatures[J]. Journal of Solution Chemistry,1998,27(1):33-66.
    [88] ARMIENTA M A, QUERE A. Hydrogeochemical behavior of chromium in the unsaturated zone and in the aquifer of Leon Valley, Mexico[J]. Water, Air, and Soil Pollution,1995,84(1-2):11-29.
    [89] RAI D, MOORE D A, HESS N J, et al. Chromium (Ⅲ) hydroxide solubility in the aqueous Na+-OH--H2PO4--HPO42--PO43--H2O System:A thermodynamic model[J]. Journal of Solution Chemistry,2004,33(10):1213-1242.
    [90] CHUNG J, NERENBERG R, RITTMANN B E. Bioreduction of selenate using a hydrogen-based membrane biofilm reactor[J]. Environmental Science & Technology,2006,40(5):1664-1671.
    [91] CHEN X, LAI C, FANG F, et al. Model-based evaluation of selenate and nitrate reduction in hydrogen-based membrane biofilm reactor[J]. Chemical Engineering Science,2019,195:262-270.
    [92] XIA S, XU X, ZHOU L. Insights into selenate removal mechanism of hydrogen-based membrane biofilm reactor for nitrate-polluted groundwater treatment based on anaerobic biofilm analysis[J]. Ecotoxicology and Environmental Safety,2019,178:123-129.
    [93] ZHOU L, XU X, XIA S. Effects of sulfate on simultaneous nitrate and selenate removal in a hydrogen-based membrane biofilm reactor for groundwater treatment:Performance and biofilm microbial ecology[J]. Chemosphere,2018,211:254-260.
    [94] HOCKIN S L, GADD G M. Linked redox precipitation of sulfur and selenium under anaerobic conditions by sulfate-reducing bacterial biofilms[J]. Applied and Environmental Microbiology,2003,69(12):7063-7072.
    [95] LENZ M, ENRIGHT A M, O'FLAHERTY V, et al. Bioaugmentation of UASB reactors with immobilized Sulfurospirillum barnesii for simultaneous selenate and nitrate removal[J]. Applied Microbiology and Biotechnology,2009,83(2):377-388.
    [96] ONTIVEROS-VALENCIA A, PENTON C R, KRAJMALNIK-BROWN R, et al. Hydrogen-Fed biofilm reactors reducing selenate and sulfate:Community structure and capture of elemental selenium within the biofilm[J]. Biotechnology and Bioengineering,2016,113(8):1736-1744.
    [97] TRUONG H T, CHEN Y, BELZILE N. Effect of sulfide, selenite and mercuric mercury on the growth and methylation capacity of the sulfate reducing bacterium Desulfovibrio desulfuricans[J]. Science of the Total Environment,2013,449:373-384.
    [98] ONTIVEROS-VALENCIA A, ZHOU C, ILHAN Z E, et al. Total electron acceptor loading and composition affect hexavalent uranium reduction and microbial community structure in a membrane biofilm reactor[J]. Water Research,2017,125:341-349.
    [99] WALL J D, KRUMHOLZ L R. Uranium reduction[J]. Annual Review of Microbiology,2006,60:149-166.
    [100] CRAFT E S, ABU-QARE A W, FLAHERTY M M, et al. Depleted and natural uranium:Chemistry and toxicological effects[J]. Journal of Toxicology and Environmental Health, Part B,2004,7(4):297-317.
    [101] ZHOU C, ONTIVEROS-VALENCIA A, LOUIS D S C, et al. Uranium removal and microbial community in a H2-based membrane biofilm reactor[J]. Water Research,2014,64:255-264.
    [102] DE C S, HENNEBEL T, DE G B, et al. Bio-palladium:From metal recovery to catalytic applications[J]. Microbial Botechnology,2012,5(1):5-17.
    [103] ZHOU C, ONTIVEROS-VALENCIA A, WANG Z, et al. Palladium recovery in a H2-based membrane biofilm reactor:Formation of Pd(0) nanoparticles through enzymatic and autocatalytic reductions[J]. Environmental Science & Technology,2016,50(5):2546-2555.
    [104] CHUNG J, RITTMANN B E. Simultaneous bio-reduction of trichloroethene, trichloroethane, and chloroform using a hydrogen-based membrane biofilm reactor[J]. Water Science and Technology,2008,58(3):495-501.
    [105] CHUNG J, KRAJMALNIK-BROWN R, RITTMANN B E. Bioreduction of trichloroethene using a hydrogen-based membrane biofilm reactor[J]. Environmental Science & Technology,2008,42(2):477-483.
    [106] YANG B, CHEN A. Effects of pentachlorophenol on the bacterial denitrification process[J]. Chemical Speciation and Bioavailability,2016,28(1-4):163-169.
    [107] LONG M, ILHAN Z E, XIA S, et al. Complete dechlorination and mineralization of pentachlorophenol (PCP) in a hydrogen-based membrane biofilm reactor (MBfR)[J]. Water Research,2018,144:134-144.
    [108] TANG Y, ZIV-EL M, ZHOU C, et al. Bioreduction of nitrate in groundwater using a pilot-scale hydrogen-based membrane biofilm reactor[J]. Frontiers of Environmental Science & Engineering in China,2010,4(3):280-285.
    [109] ZHAO H P, ONTVEROS-VALENCIA A, TANG Y, et al. Removal of multiple electron acceptors by pilot-scale, two-stage membrane biofilm reactors[J]. Water Research,2014,54:115-122.
    [110] NERENBERG R, RITTMANN B E, GILLOGLY T E, et al. Perchlorate reduction using a hollow-fiber membrane biofilm reactor:Kinetics, microbial ecology, and pilot-scale studies[C]. In Situ and On-Site Bioremediation-The Seventh International Symposium.June.2003:2-5.
  • 加载中
计量
  • 文章访问数:  4311
  • HTML全文浏览数:  4311
  • PDF下载数:  79
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-07-26

去除水中氧化性污染物的新工艺-氢基质膜生物膜反应器(MBfR)

    通讯作者: 黄万抚, E-mail: sim2008@sina.com
  • 1. 江西理工大学资源与环境工程学院, 赣州, 341000;
  • 2. 江西理工大学建筑与测绘工程学院, 赣州, 341000
基金项目:

国家自然科学基金(41662004)资助.

摘要: 水中存在的氧化性污染物不仅对生态环境造成危害,还严重威胁人类健康.传统处理工艺具有能耗大,成本高和易产生二次污染等缺点.为了克服上述缺点并达到高效安全的处理效果,将无泡曝气技术和生物膜技术结合起来,研制出了一种完全区别于生物膜反应器的新兴水处理技术——氢基质膜生物膜反应器(Hydrogen-based membrane biofilm reactor,MBfR).因其具有清洁环保,成本低和高效处理氧化性污染物等优点,成为了大家关注的热点.本文论述了氧化性污染物(无机阴离子、重金属离子、有机化合物)的来源及危害,MBfR的发展简史、工作原理、电子供体的选择以及MBfR去除氧化性污染物的实验效果,并总结了影响MBfR的主要因素以及如何控制这些因素,从而使其更好地工业化应用,最后阐述了MBfR未来的研究方向主要包括膜丝的改进、生物膜的控制、优化反应器结构和操作条件,为后续MBfR的相关研究提供一系列有效的参考.

English Abstract

参考文献 (110)

目录

/

返回文章
返回