阴阳极成对耦合紫外光辅助电催化降解毒死蜱

蒋焦, 凌霄, 何明磊, 周明明. 阴阳极成对耦合紫外光辅助电催化降解毒死蜱[J]. 环境化学, 2021, (2): 653-661. doi: 10.7524/j.issn.0254-6108.2019080504
引用本文: 蒋焦, 凌霄, 何明磊, 周明明. 阴阳极成对耦合紫外光辅助电催化降解毒死蜱[J]. 环境化学, 2021, (2): 653-661. doi: 10.7524/j.issn.0254-6108.2019080504
JIANG Jiao, LING Xiao, HE Minglei, ZHOU Mingming. Anode-cathode paired system of coupling UV-assisted electrocatalytic degradation of chlorpyrifos[J]. Environmental Chemistry, 2021, (2): 653-661. doi: 10.7524/j.issn.0254-6108.2019080504
Citation: JIANG Jiao, LING Xiao, HE Minglei, ZHOU Mingming. Anode-cathode paired system of coupling UV-assisted electrocatalytic degradation of chlorpyrifos[J]. Environmental Chemistry, 2021, (2): 653-661. doi: 10.7524/j.issn.0254-6108.2019080504

阴阳极成对耦合紫外光辅助电催化降解毒死蜱

    通讯作者: 何明磊, E-mail: 36493313@qq.com
  • 基金项目:

    国家自然科学基金(E080402)资助.

Anode-cathode paired system of coupling UV-assisted electrocatalytic degradation of chlorpyrifos

    Corresponding author: HE Minglei, 36493313@qq.com
  • Fund Project: Supported by the National Natural Science Foundation of China(E080402).
  • 摘要: 以空气扩散阴极、纯铂阳极和紫外灯构建了阴阳极成对耦合紫外光辅助电催化的体系,并系统地研究了电流密度、阳极SO42-浓度以及毒死蜱初始浓度对毒死蜱降解效果的影响.结果表明,当阴极/阳极的电流密度为45/450 mA·cm-2,阳极SO42-浓度为1.0 mol·L-1,毒死蜱初始浓度为25 mg·L-1时,反应60 min后毒死蜱降解率可达99%.对阴极产物的红外分析结果表明,毒死蜱降解后结构中的吡啶环和PS被破坏,产生亚硝氮和正磷酸盐,毒性得到减弱.通过对比阴阳极成对耦合紫外光复合体系与阴极耦合紫外光复合体系、阳极耦合紫外光复合体系的电流效率,发现阴阳极成对耦合紫外光复合体系的电流效率是阴极耦合紫外光复合体系的2倍,是阳极耦合紫外光复合体系的4倍.
  • 加载中
  • [1] 刘玉灿,苏苗苗,董金坤,等. UV和UV/H2O2工艺对水中二嗪磷的降解[J]. 中国环境科学,2019,39(4):1602-1605.

    LIU Y C,SU M M,DONG J K,et al. Degradation rule and mechanisms of diazinon in water by sole UV and UV/H2O2 process[J]. China Environmental Science,2019,39(4):1602-1605(in Chinese).

    [2] JAE H A,SHIN A L,SOO J K,et al. Biodegradation of oraganophosphorus insecticides with PS bonds by two sphingobium strains[J]. International Biodeterioration & Biodegradation,2018,132(2):59-65.
    [3] DIMITRIOS G,KARPOUZA,ANASTASIA F,et al. Non-specific biodegradation of the organophosphorus pesticides, cadusafos and ethoprophos by two bacterial isolates[J]. Microbiology Ecology,2005,53(3):369-378.
    [4] SU Q,ZHANG Y. The mechanism and affecting factors of degradation of organophosphorous pesticides by TiO2 photocatalytic process[J]. Guang-zhou Chemistry,2005,30(1):52-57.
    [5] 习海玲,韩世同,左言军,等. TiO2光催化降解乙酰甲胺磷[J]. 环境化学,2008,27(5):560-563.

    XI H L,HAN S T,ZUO Y J,et al. The photo catalytic degradation of acephate phosphate by TiO2[J]. Environmental Chemistry,2008,27(5):560-563(in Chinese).

    [6] SALERNO A,PITAULT I,DEVERS T,et al. Model-based optimization of parameters for degradation reaction of an organophosphorus pesticide, paraoxon, using CeO2 nanoparticles in water media[J]. Environmental Toxicology and Pharmacology,2017,53(6):18-28.
    [7] FABIO G,IGNASI S,ABDOULAYE T,et al. Treatment of single and mixed pesticide formulations by solar photoelectro-fenton using a flow plant[J]. Chemical Engineering Journal,2017,310(2):503-513.
    [8] 袁爱华. 臭氧化降解降解水中啶虫脒的研究[D]. 泰安:山东农业大学,2014:25-35. YUAN A H. Study on the Degradation of acetamiprid in aqueous solution by ozonation[D]. Taian:Shandong Agricultural University,2014:25

    -35(in Chinese).

    [9] 郑宾国,胡俊霞,姚娇娇,等. Oxone/紫外氧化降解水中有机磷农药氧乐果的研究[J]. 环境污染与防治,2018,40(3):256-258.

    ZHENG B G,HU J X,YAO J J,et al. Study on the degradation of organophosphorus pesticide omethoate by Oxone/UV in aqueous solution[J]. Environmental Polution and Control,2018,40(3):256-258(in Chinese).

    [10] XU D H,WANG S Z,ZHAN J,et al. Supercritical water oxidation of a pesticide wastewater[J]. Chemical Engineering Research and Design,2015,94(2):396-406.
    [11] 周海云,崔卫方,姜伟立. 超临界水氧化处理毒死蜱产生的缩合废水[J]. 科学技术与工程,2018,18(2):368-370.

    ZHOU H Y,CUI W F,JIANG W L. Treatment of wastewater from production of chlorpyrifos by supercritical water oxidation[J]. Science Technology and Engineering,2018,18(2):368-370(in Chinese).

    [12] ARAPOGLOU D,VLYSSIDES A,ISRAILIDES C,et al. Detoxification of methyl-parathion pesticide in aqueous solutions by electrochemical oxidation[J]. Journal of Hazardous Materials,2003,98(3):191-199.
    [13] HENRIK T M,ERIK G S,JENS M. Study of degradation intermediates formed during electrochemical oxidation of pesticide residue 2,6-dichlorobenzamide at boron doped diamond and platinumiridium anodes[J]. Chemosphere,2014,120:84-91.
    [14] YASSINE A,OMAR B,KARINE G. Study of the degradation of an organophosphorus pesticide using electrogenerated hydroxyl radicals or heat-activated persulfate[J]. Separation and Purification Technology,2019,208:27-33.
    [15] 王志韩. 改进氧阴极还原法原位生产过氧化氢研究[D]. 哈尔滨:哈尔滨工业大学,2013:40-43. WANG Z H. Improved cathodic reduction of oxygen in situ-production of hydrogen peroxide[D]. Herbin:Harbin Institute of Technology,2013:40

    -43(in Chinese).

    [16] 楼络琦,陈佳乐,张健,等. 双金属Fe0-Cu0的合成及其催化过硫酸钠(PS)降解邻苯二甲酸二丁酯的研究[J]. 环境化学,2019,38(10):2180-2186.

    LOU L Q,CHEN J L,ZHANG J,et al. Synthesis of bimetallic Fe0-Cu0 to catalyze persulfate for degradation of dibutyl phthalate[J]. Environmental Chemistry,2019,38(10):2180-2186(in Chinese).

    [17] 魏红,李娟,李克斌,等. 左氧氟沙星的超声/H2O2联合降解研究[J]. 中国环境科学,2013,33(2):258-260.

    WEI H,LI J,LI K B,et al. Study on the combined degradation of levofloxacin by ultrasound/H2O2[J]. China Environmental Science,2013,33(2):258-260(in Chinese).

    [18] 谷得明,郭昌胜,冯启言,等. 基于硫酸根自由基的高级氧化技术及其在环境治理中的应用[J]. 环境化学,2018,37(11):2490-2501.

    GU D M,GUO C S,FENG Q Y,et al. Sulfate radical-based advanced oxidation processes and its application in environmental remediation[J]. Environmental Chemistry,2018,37(11):2490-2501(in Chinese).

    [19] 张文尧. 成对电解技术再生殷钢蚀刻液[D]. 上海:华东理工大学,2010:5-7. ZHANG W Y. Regeneration of invar etching liquid by paired electrolysis technology[D]. Shanghai:East China University of Science and Technology,2010:5

    -7(in Chinese).

    [20] 宋浩然. 阴阳极同步产过氧化氢和过硫酸铵研究[D]. 哈尔滨:哈尔滨工业大学,2014:23-46. SONG H R. Research on cogeneration of hydrogen peroxide cathodic and ammonium persulfate anodic[D]. Herbin:Harbin Institute of Technology,2014:23

    -46(in Chinese).

    [21] 付永胜,史鸿乐,刘义青,等. UV/H2O2光化学降解水中的三氯生[J]. 中国环境科学,2018,38(2):616-626.

    FU Y S,SHI H L,LIU Y Q,et al. Photochemical degradation of triclosan by UV/H2O2 in water[J]. China Environmental Science,2018,38(2):616-626(in Chinese).

    [22] 罗海健. 双极同步产生·OH/SO4降解苯酚体系的构建及机制研究[D]. 哈尔滨:哈尔滨工业大学,2017:76-110. LUO H J. Oxidation system of simultaneous generation of·OH/SO4

    on a paired electrode for phenol degradation and its mechanism study[D]. Herbin:Harbin Institute of Technology,2017:76-110(in Chinese).

    [23] 王颖,熊源泉,张晋萍. 脱硫脱硝吸收液中硫酸铵电化学制备过硫酸铵的实验研究[J]. 东南大学学报(自然科学版),2015,45(4):725-743. WANG Y,XIONG Y Q,ZHANG J P. Experimental study on electrosynthesis of ammonium persulfate using ammonium sulfate solutions from wet simultaneous desulfurization and denitrification[J]. Journal of Southeast University(Natural Science Edition),2015,45(4):725-743(in Chinese).
    [24] 徐文思,彭伟,张星,等. 过硫酸盐活化技术降解污染物的研究进展[J]. 化学与生物工程,2018,35(6):13-47.

    XU W S,PENG W,ZHANG X,et al. Research progress in degradation of pollutants by persulfate activation technology[J]. Chemistry & Bioengineering,2018,35(6):13-47(in Chinese).

    [25] JOSE R,MARIA J,GARCIA R,et al. Conductive-diamoned electrochemical oxidation of chlorpyrifos in wastewater and identification of its main degradation products by LC-TOFMS[J]. Chemosphere,2012,89(10):1169-1176.
  • 加载中
计量
  • 文章访问数:  1741
  • HTML全文浏览数:  1741
  • PDF下载数:  21
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-05

阴阳极成对耦合紫外光辅助电催化降解毒死蜱

    通讯作者: 何明磊, E-mail: 36493313@qq.com
  • 1. 广东省城乡规划设计研究院, 广州, 510145;
  • 2. 哈尔滨工业大学(深圳)环境科学与工程研究中心, 深圳, 518055
基金项目:

国家自然科学基金(E080402)资助.

摘要: 以空气扩散阴极、纯铂阳极和紫外灯构建了阴阳极成对耦合紫外光辅助电催化的体系,并系统地研究了电流密度、阳极SO42-浓度以及毒死蜱初始浓度对毒死蜱降解效果的影响.结果表明,当阴极/阳极的电流密度为45/450 mA·cm-2,阳极SO42-浓度为1.0 mol·L-1,毒死蜱初始浓度为25 mg·L-1时,反应60 min后毒死蜱降解率可达99%.对阴极产物的红外分析结果表明,毒死蜱降解后结构中的吡啶环和PS被破坏,产生亚硝氮和正磷酸盐,毒性得到减弱.通过对比阴阳极成对耦合紫外光复合体系与阴极耦合紫外光复合体系、阳极耦合紫外光复合体系的电流效率,发现阴阳极成对耦合紫外光复合体系的电流效率是阴极耦合紫外光复合体系的2倍,是阳极耦合紫外光复合体系的4倍.

English Abstract

参考文献 (25)

目录

/

返回文章
返回