蓝藻发酵液中氮磷回收及其作为反硝化碳源研究

李子阳, 陆东亮, 华天予, 张炜, 肖壮波, 黄兴, 赵明星, 施万胜, 阮文权. 蓝藻发酵液中氮磷回收及其作为反硝化碳源研究[J]. 环境化学, 2020, (12): 3562-3573. doi: 10.7524/j.issn.0254-6108.2019090302
引用本文: 李子阳, 陆东亮, 华天予, 张炜, 肖壮波, 黄兴, 赵明星, 施万胜, 阮文权. 蓝藻发酵液中氮磷回收及其作为反硝化碳源研究[J]. 环境化学, 2020, (12): 3562-3573. doi: 10.7524/j.issn.0254-6108.2019090302
LI Ziyang, LU Dongliang, HUA Tianyu, ZHANG Wei, XIAO Zhuangbo, HUANG Xing, ZHAO Mingxing, SHI Wansheng, RUAN Wenquan. Recovery of nitrogen and phosphorus from fermentation liquid of cyanobacteria and its application as a carbon source for denitrification[J]. Environmental Chemistry, 2020, (12): 3562-3573. doi: 10.7524/j.issn.0254-6108.2019090302
Citation: LI Ziyang, LU Dongliang, HUA Tianyu, ZHANG Wei, XIAO Zhuangbo, HUANG Xing, ZHAO Mingxing, SHI Wansheng, RUAN Wenquan. Recovery of nitrogen and phosphorus from fermentation liquid of cyanobacteria and its application as a carbon source for denitrification[J]. Environmental Chemistry, 2020, (12): 3562-3573. doi: 10.7524/j.issn.0254-6108.2019090302

蓝藻发酵液中氮磷回收及其作为反硝化碳源研究

    通讯作者: 赵明星, E-mail: mxzhao@jiangnan.edu.cn
  • 基金项目:

    水体污染控制与治理科技重大专项(2017ZX07203-001)资助.

Recovery of nitrogen and phosphorus from fermentation liquid of cyanobacteria and its application as a carbon source for denitrification

    Corresponding author: ZHAO Mingxing, mxzhao@jiangnan.edu.cn
  • Fund Project: Support by Major Science and Technology Program for Water Pollution Control and Treatment(2017ZX07203-001).
  • 摘要: 蓝藻的处理处置及其资源化利用成为亟需解决的问题.本文采用鸟粪石+磷酸钙沉淀法组合工艺回收蓝藻厌氧发酵产酸液中的氮和磷,纯化后的蓝藻发酵液作为外源碳源进行污水的反硝化脱氮利用.实验结果表明,蓝藻通过厌氧发酵可产生大量的挥发性脂肪酸(VFAs),浓度高达25960 mg·L-1,其主要成分乙酸和丁酸的浓度分别为12800 mg·L-1和7062 mg·L-1,占VFAs的76.51%.鸟粪石沉淀的最佳工艺参数为:pH值为9,反应时间为60 min,Mg:P:N的摩尔比为1.2:1.1:1;磷酸钙沉淀的最佳工艺参数为:pH值为10,反应时间为15 min,Ca:P的摩尔比为6.68:1.在最佳条件下,组合工艺处理后的蓝藻发酵液出水NH4+-N和PO43--P浓度为22.83 mg·L-1和2.7 mg·L-1,回收率分别为98.84%和94.62%.反硝化脱氮实验中,蓝藻发酵液作为外源碳源时,NO3--N的去除率达到99.13%,反硝化速率为1.98 mg·(g·h)-1(以MLSS计),反硝化效果比商业碳源(乙醇、乙酸钠)更好,可以作为城市污水处理厂反硝化脱氮的替代碳源.本文可为蓝藻的全流程处理提供借鉴.
  • 加载中
  • [1] 生态环境部.2018中国生态环境状况公报[R]. 北京:生态环境部,2018. Ministry of ecology and environment. China ecological environment status bulletin in 2018[R]. Beijing:Ministry of Ecology and Environment, 2018(in Chinese).
    [2] 宋微.蓝藻水华暴发的危害与控制技术研究[J]. 环境保护与循环经济,2016,36(9):55-58.

    SONG H. Research on harm and control measures of cyanobacteria blooms[J]. Environmental Protection and Circular Economy, 2016, 36(9):55-58(in Chinese).

    [3] 李玉祥. 太湖蓝藻厌氧发酵产挥发性脂肪酸的研究[D]. 无锡:江南大学,2009. LI Y X. Production of volatile fatty acids from algae of Taihu lake by anaerobic fermentation[D]. Wuxi:Jiangnan University, 2009(in Chinese).
    [4] OMETTO F, QUIROGA G, PŠENIČKA P, et al. Impacts of microalgae pre-treatments for improved anaerobic digestion:Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis[J]. Water Research, 2014, 65:350-361.
    [5] ONUMAEGBU C, MOONEY J, ALASWAD A, et al. Pre-treatment methods for production of biofuel from microalgae biomass[J]. Renewable and Sustainable Energy Reviews, 2018, 93:16-26.
    [6] PURCELL D, PARSONS S A, JEFFERSON B. The influence of ultrasound frequency and power on the algal species Microcystis aeruginosa, Aphanizomenon flos-aquae, Scenedesmus subspicatus and Melosira sp.[J]. Environmental Technology, 2013, 34(17):2477-2490.
    [7] CHO H U, KIM Y M, PARK J M. Changes in microbial communities during volatile fatty acid production from cyanobacterial biomass harvested from a cyanobacterial bloom in a river[J]. Chemosphere, 2018, 202:306-311.
    [8] CHO H U, KIM H G, KIM Y M, et al. Volatile fatty acid recovery by anaerobic fermentation from blue-green algae:Effect of pretreatment[J]. Bioresource Technology, 2017, 244:1433-1438.
    [9] 王敏,廖家林,黄振兴,等.功能性营养物质对蓝藻厌氧发酵产酸的强化作用[J]. 食品与生物技术学报,2012,31(4):379-384.

    WANG M, LIAO J L, HUANG Z X, et al. Effects of functional nutrition additions on organic acids productions from blue-green algae fermentation[J]. Journal of Food Science and Biotechnology, 2012, 31(4):379-384(in Chinese).

    [10] 杨敏,孙永利,郑兴灿,等.不同外加碳源的反硝化效能与技术经济性分析[J]. 给水排水,2010,46(11):125-128.

    YANG M, SUN Y L, ZHENG X C, et al. Denitrification efficiency and techno-economic analysis of different exotic additional carbon source[J]. Water & Wastewater Engineering, 2010, 46(11):125-128(in Chinese).

    [11] 郑晓英,乔露露,王慰,等.碳源对反硝化生物滤池运行及微生物种群的影响[J]. 环境工程学报,2018,12(5):1434-1442.

    ZHENG X Y, QIAO L L, WANG W, et al. Effects of carbon sources on operation and microbial population of denitrification biological filter[J]. Chinese Journal of Environmental Engineering, 2018, 12:1434-1442(in Chinese).

    [12] ZHANG Y M, WANG X C, CHENG Z, et al. Effect of fermentation liquid from food waste as a carbon source for enhancing denitrification in wastewater treatment[J]. Chemosphere, 2016, 144:689-696.
    [13] LIU H, HAN P, LIU H B, et al. Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater[J]. Bioresource Technology, 2018, 260:105-114.
    [14] LE CORRE K S, VALSAMI-JONES E, HOBBS P, et al. Agglomeration of struvite crystals[J]. Water Research, 2007, 41(2):419-425.
    [15] 张记市,王玉松.鸟粪石结晶法回收垃圾渗滤液氨氮研究[J]. 环境工程学报,2009,3(11):2017-2020.

    ZHANG J S, WANG Y S. Struvite crystallization for recovering ammonia nitrogen from landfill leachate[J]. Chinese Journal of Environmental Engineering, 2009, 3(11):2017-2020(in Chinese).

    [16] TONG J, CHEN Y G. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment[J]. Water Research, 2009, 43(12):2969-2976.
    [17] 晏波,胡成生,朱凡,等.磷酸铵镁沉淀法去除NH3-N的影响因素及应用研究[J]. 环境化学,2005,24(6):685-689.

    YAN B, HU C S, ZHU F, et al. Experiment study for ammonia-nitrogen removal from wastewater by magnesium ammonium phosphate precipitation[J]. Environmental Chemistry, 2005, 24(6):685-689(in Chinese).

    [18] ZENG F Z, ZHAO Q L, JIN W B, et al. Struvite precipitation from anaerobic sludge supernatant and mixed fresh/stale human urine[J]. Chemical Engineering Journal, 2018, 344:254-261.
    [19] DE-BASHAN L E, BASHAN Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer[J]. Water Research, 2004, 38(19):4222-4246.
    [20] 高英,叶荣,宋永会,等.溶液条件对磷酸钙沉淀法回收磷的影响[J]. 安全与环境学报,2007, 7(3):58-62.

    GAO Y, YE R, SONG Y H, et al. Effects of solution conditions on the precipitation of calcium phosphate for recovery[J]. Journal of Safety and Environment, 2007, 7(3):58-62(in Chinese).

    [21] 国家环境保护总局.水和废水监测分析方法[M]. 第四版,中国环境科学出版社,2002. State Environmental Protection Administration of China. Water and wastewater test and analysis methods[M]. Fourth edition, Beijing:China Environmental Science Press, 2002(in Chinese).
    [22] 高常卉,黄振兴,赵明星,等.餐厨垃圾厌氧干发酵产氢特性及其调控[J]. 环境工程学报,2018,12(6):1843-1852.

    GAO C H, HUANG Z X, ZHAO M X, et al. Hydrogen generation and its adjustment from food wastes by dry fermentation[J]. Chinese Journal of Environmental Engineering, 2018, 12(6):1843-1852(in Chinese).

    [23] LIU F, TIAN Y, DING Y, et al. The use of fermentation liquid of wastewater primary sedimentation sludge as supplemental carbon source for denitrification based on enhanced anaerobic fermentation[J]. Bioresource Technology, 2016, 219:6-13.
    [24] SONG Y H, DAI Y R, HU Q, et al. Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater[J]. Chemosphere, 2014, 101:41-48.
    [25] HAO X D, WANG C C, LAN L, et al. Struvite formation, analytical methods and effects of pH and Ca2+[J]. Water Science & Technology, 2008, 58(8):1687-1692.
    [26] ZHANG T, DING L, REN H Q. Pretreatment of ammonium removal from landfill leachate by chemical precipitation[J]. Journal of Hazardous Materials, 2009, 166(2/3):911-915.
    [27] 杨德坤,颜成,邬振江,等.鸟粪石结晶法去除餐厨沼液中氨氮的研究[J]. 南京农业大学学报,2019,42(2):300-307.

    YANG D K, YAN C, WU Z J, et al. Removal of ammonia nitrogen in anaerobically digested food-waste slurry by struvite crystallization approach[J]. Journal of Nanjing Agricultural University, 2019, 42(2):300-307(in Chinese).

    [28] BOUROPOULOS N C, KOUTSOUKOS P G. Spontaneous precipitation of struvite from aqueous solutions[J]. Journal of Crystal Growth, 2000, 213(3):381-388.
    [29] 余荣台,丁丽丽,任洪强,等.磷酸铵镁化学结晶技术研究现状[J]. 工业用水与废水,2014,45(6):1-3.

    YU R T, DING L L, REN H Q, et al. Research status of struvite chemical crystallization technology[J]. Industrial Water & Wastewater, 2014, 45(6):1-3(in Chinese).

    [30] DURRANT A E, SCRIMSHAW M D, STRATFUL I, et al. Review of the feasibility of recovering phosphate from wastewater for use as a raw material by the phosphate industry[J]. Environmental Technology Letters, 1999, 20(7):749-758.
    [31] 赵亚丽,宋永会,钱锋,等.不同Ca/P比下碳酸根对磷酸钙沉淀反应回收磷的影响[J]. 环境工程学报,2014:8(5):1755-1760.

    ZHAO Y L, SONG Y H, QIAN F, et al. Effect of carbonate on calcium phosphate precipitation at different Ca/P ratios for phosphorus recovery[J]. Chinese Journal of Environmental Engineering, 2014, 8(5):1755-1760(in Chinese).

    [32] HOSNI K, MOUSSA S B, AMOR M B. Conditions influencing the removal of phosphate from synthetic wastewater:Influence of the ionic composition[J]. Desalination, 2007, 206(1):279-285.
    [33] SONG Y H, HAHN H H, HOFFMANN E. Effects of solution conditions on the precipitation of phosphate for recovery[J]. Chemosphere, 2002, 48(10):1029-1034.
    [34] KIM E, SHIN S G, JANNAT M A H, et al. Use of food waste-recycling wastewater as an alternative carbon source for denitrification process:A full-scale study[J]. Bioresource Technology, 2017, 245:1016-1021.
    [35] 李梦露,蒋建国,张昊巍.餐厨垃圾水解液与传统碳源的脱氮效果比较[J]. 中国给水排水,2014,30(15):20-24.

    LI M L, JIANG J G, ZHNAG H W. Comparison of denitrification efficiency between kitchen waste hydrolysate and conventional external carbon source[J]. China Water & Wastewater, 2014, 30(15):20-24(in Chinese).

    [36] 李桂淑,李广,李晶,等.剩余污泥发酵产物作为碳源的反硝化特性研究[J]. 工业水处理,2015,35(5):23-26.

    LI G S, LI G, LI J, et al. Research on the denitrifying characteristic of fermented products from residual sludge used as carbon source[J]. Industrial Water Treatment, 2015, 35(5):23-26(in Chinese).

  • 加载中
计量
  • 文章访问数:  1897
  • HTML全文浏览数:  1897
  • PDF下载数:  40
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-03
李子阳, 陆东亮, 华天予, 张炜, 肖壮波, 黄兴, 赵明星, 施万胜, 阮文权. 蓝藻发酵液中氮磷回收及其作为反硝化碳源研究[J]. 环境化学, 2020, (12): 3562-3573. doi: 10.7524/j.issn.0254-6108.2019090302
引用本文: 李子阳, 陆东亮, 华天予, 张炜, 肖壮波, 黄兴, 赵明星, 施万胜, 阮文权. 蓝藻发酵液中氮磷回收及其作为反硝化碳源研究[J]. 环境化学, 2020, (12): 3562-3573. doi: 10.7524/j.issn.0254-6108.2019090302
LI Ziyang, LU Dongliang, HUA Tianyu, ZHANG Wei, XIAO Zhuangbo, HUANG Xing, ZHAO Mingxing, SHI Wansheng, RUAN Wenquan. Recovery of nitrogen and phosphorus from fermentation liquid of cyanobacteria and its application as a carbon source for denitrification[J]. Environmental Chemistry, 2020, (12): 3562-3573. doi: 10.7524/j.issn.0254-6108.2019090302
Citation: LI Ziyang, LU Dongliang, HUA Tianyu, ZHANG Wei, XIAO Zhuangbo, HUANG Xing, ZHAO Mingxing, SHI Wansheng, RUAN Wenquan. Recovery of nitrogen and phosphorus from fermentation liquid of cyanobacteria and its application as a carbon source for denitrification[J]. Environmental Chemistry, 2020, (12): 3562-3573. doi: 10.7524/j.issn.0254-6108.2019090302

蓝藻发酵液中氮磷回收及其作为反硝化碳源研究

    通讯作者: 赵明星, E-mail: mxzhao@jiangnan.edu.cn
  • 1. 江南大学, 环境与土木工程学院, 无锡, 214122;
  • 2. 江苏省厌氧生物技术重点实验室, 无锡, 214122;
  • 3. 无锡市城市环境科技有限公司, 无锡, 214000
基金项目:

水体污染控制与治理科技重大专项(2017ZX07203-001)资助.

摘要: 蓝藻的处理处置及其资源化利用成为亟需解决的问题.本文采用鸟粪石+磷酸钙沉淀法组合工艺回收蓝藻厌氧发酵产酸液中的氮和磷,纯化后的蓝藻发酵液作为外源碳源进行污水的反硝化脱氮利用.实验结果表明,蓝藻通过厌氧发酵可产生大量的挥发性脂肪酸(VFAs),浓度高达25960 mg·L-1,其主要成分乙酸和丁酸的浓度分别为12800 mg·L-1和7062 mg·L-1,占VFAs的76.51%.鸟粪石沉淀的最佳工艺参数为:pH值为9,反应时间为60 min,Mg:P:N的摩尔比为1.2:1.1:1;磷酸钙沉淀的最佳工艺参数为:pH值为10,反应时间为15 min,Ca:P的摩尔比为6.68:1.在最佳条件下,组合工艺处理后的蓝藻发酵液出水NH4+-N和PO43--P浓度为22.83 mg·L-1和2.7 mg·L-1,回收率分别为98.84%和94.62%.反硝化脱氮实验中,蓝藻发酵液作为外源碳源时,NO3--N的去除率达到99.13%,反硝化速率为1.98 mg·(g·h)-1(以MLSS计),反硝化效果比商业碳源(乙醇、乙酸钠)更好,可以作为城市污水处理厂反硝化脱氮的替代碳源.本文可为蓝藻的全流程处理提供借鉴.

English Abstract

参考文献 (36)

返回顶部

目录

/

返回文章
返回