广州市不同微环境室内灰尘中合成麝香分布及健康风险初步评价

胡琼璞, 徐亮, 刘艺, 曾祥英, 于志强. 广州市不同微环境室内灰尘中合成麝香分布及健康风险初步评价[J]. 环境化学, 2020, (12): 3299-3305. doi: 10.7524/j.issn.0254-6108.2019091501
引用本文: 胡琼璞, 徐亮, 刘艺, 曾祥英, 于志强. 广州市不同微环境室内灰尘中合成麝香分布及健康风险初步评价[J]. 环境化学, 2020, (12): 3299-3305. doi: 10.7524/j.issn.0254-6108.2019091501
HU Qiongpu, XU Liang, LIU Yi, ZENG Xiangying, YU Zhiqiang. Occurrence and distribution of synthetic musks in indoor dust in Guangzhou and their potential human health risk[J]. Environmental Chemistry, 2020, (12): 3299-3305. doi: 10.7524/j.issn.0254-6108.2019091501
Citation: HU Qiongpu, XU Liang, LIU Yi, ZENG Xiangying, YU Zhiqiang. Occurrence and distribution of synthetic musks in indoor dust in Guangzhou and their potential human health risk[J]. Environmental Chemistry, 2020, (12): 3299-3305. doi: 10.7524/j.issn.0254-6108.2019091501

广州市不同微环境室内灰尘中合成麝香分布及健康风险初步评价

    通讯作者: 曾祥英, E-mail: zengxy@gig.ac.cn
  • 基金项目:

    中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC018-02)和国家重点研发计划(2017YFC0212003)资助.

Occurrence and distribution of synthetic musks in indoor dust in Guangzhou and their potential human health risk

    Corresponding author: ZENG Xiangying, zengxy@gig.ac.cn
  • Fund Project: Supported by Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (CAS) (QYZDJ-SSW-DQC018-02) and National Key R&D Program of China (2017YFC0212003).
  • 摘要: 本文采集了广州市不同微环境(居民家庭、办公室、化学前处理实验室和仪器房)室内灰尘45个,并研究了灰尘中9种合成麝香(synthetic musks,SMs)的含量与分布.灰尘中合成麝香总浓度(∑SMs)范围为17.6—1153 ng·g-1,在国内外处于较低水平,主要化合物为佳乐麝香(HHCB)、吐纳麝香(AHTN)和酮麝香(MK).相关性分析结果显示,HHCB、AHTN和MK可能有相近的来源和相似的环境行为.不同微环境中的SMs存在显著差异(P<0.05),家庭灰尘中∑SMs(49.6—1153 ng·g-1)含量要显著高于其他3种微环境.健康风险评估结果表明仅灰尘摄入这一暴露途径,SMs对成人和幼童所致健康风险有限.
  • 加载中
  • [1] TUMOVA J, SAUER P, GOLOVKO O, et al. Effect of polycyclic musk compounds on aquatic organisms:A critical literature review supplemented by own data[J]. Science of the Total Environment, 2019, 651:2235-2246.
    [2] PATEL S. Fragrance compounds:The wolves in sheep's clothings[J]. Medical Hypotheses, 2017, 102:106-111.
    [3] LI X X, CHU Z H, YANG J W, et al. Synthetic musks:A class of commercial fragrance additives in personal care products (PCPs) causing concern as emerging contaminants[M]. California:Elsevier Academic Press, 2018.
    [4] FAN M, LIU Z H, SCOT D, et al. Environmental risk assessment of polycyclic musks HHCB and AHTN in consumer product chemicals in China[J]. Science of the Total Environment, 2017, 599:771-779.
    [5] YU Y X, PANG Y P, LI C, et al. Concentrations and seasonal variations of polybrominated diphenyl ethers (PBDEs) in in-and out-house dust and human daily intake via dust ingestion corrected with bioaccessibility of PBDEs[J]. Environment International, 2012, 42:124-131.
    [6] ZENG X Y, WU Y, LIU Z Y, et al. Occurrence and distribution of organophosphate ester flame retardants in indoor dust and their potential health exposure risk[J]. Environmental Toxicology and Chemistry, 2018, 37(2):345-352.
    [7] ZHOU L, HILTSCHER M, PUETTMANN W. Occurrence and human exposure assessment of organophosphate flame retardants in indoor dust from various microenvironments of the Rhine/Main region, Germany[J]. Indoor Air, 2017, 27(6):1113-1127.
    [8] CAO Z G, WANG M M, CHEN Q Y, et al. Spatial, seasonal and particle size dependent variations of PAH contamination in indoor dust and the corresponding human health risk[J]. The Science of the Total Environment, 2018, 653:423-430.
    [9] ZENG X Y, HU Q P, HE L X, et al. A simple analytical method for the simultaneous determination of multiple organic pollutants in sediment samples[J]. MethodsX, 2018, 5:1089-1094.
    [10] KUBWABO C, FAN X H, RASMUSSEN P E, et al. Determination of synthetic musk compounds in indoor house dust by gas chromatography-ion trap mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2012, 404(2):467-477.
    [11] 周静,张晓岚,徐红斌.同位素稀释-气相色谱-串联质谱法测定化妆品中10种合成麝香[J].质谱学报,2018,39(4):476-484.

    ZHOU J, ZHANG X L, XU H B. Determination of 10 synthetic musks in cosmetic by isotope dilution-GC-MS/MS[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(4):476-484.

    [12] ZHANG X L, YAO Y, ZENG X Y, et al. Synthetic musks in the aquatic environment and personal care products in Shanghai, China[J]. Chemosphere, 2008, 72(10):1553-1558.
    [13] LU Y, YUAN T, YUN S H, et al. Occurrence of synthetic musks in indoor dust from China and implications for human exposure[J]. Archives of Environmental Contamination and Toxicology, 2011, 60(1):182-189.
    [14] NAKATA H, HINOSAKA M, YANAGIMOTO H. Macrocyclic-, polycyclic-, and nitro musks in cosmetics, household commodities and indoor dusts collected from Japan:Implications for their human exposure[J]. Ecotoxicology and Environmental Safety, 2015, 111:248-255.
    [15] REINER J L, KURUNTHACHALAM K. A survey of polycyclic musks in selected household commodities from the United States[J]. Chemosphere, 2006, 62(6):867-873.
    [16] ZENG X Y, SHENG G Y, GUI H Y, et al. Preliminary study on the occurrence and distribution of polycyclic musks in a wastewater treatment plant in Guandong, China[J]. Chemosphere, 2007, 69(8):1305-1311.
    [17] 潘虹,朱利利, 黄慧,等.气相色谱-质谱联用法测定驱蚊产品中6种合成麝香[J].农药,2019, 58(2):109-111.

    PAN H, ZHU L L, HUANG H, et al. Analysis of six synthetic musk in mosquito repellent products by GC-MS[J]. Agrochemicals, 2019, 58(2):109-111(in Chinese).

    [18] LIU N N, SHI Y L, XU L, et al. Occupational exposure to synthetic musks in barbershops, compared with the common exposure in the dormitories and households[J]. Chemosphere, 2013, 93(9):1804-1810.
    [19] BLANCHARD O, GLORENNEC P, MERCIER F, et al. Semivolatile organic compounds in indoor air and settled dust in 30 French dwellings[J]. Environmental Science & Technology, 2014, 48(7):3959-3969.
    [20] MERCIER F, GILLES E, SARAMITO G, et al. A multi-residue method for the simultaneous analysis in indoor dust of several classes of semi-volatile organic compounds by pressurized liquid extraction and gas chromatography/tandem mass spectrometry[J]. Journal of Chromatography A, 2014, 1336:101-111.
    [21] BUTTE W. Synthetic Musks in House Dust[M]. Berlin:Springer-Verlag, 2004.
    [22] FROMME H, LAHRZ T, PILOTY M, et al. Occurrence of phthalates and musk fragrances in indoor air and dust from apartments and kindergartens in Berlin (Germany)[J]. Indoor Air, 2010, 14(3):188-195.
    [23] REGUEIRO J, LLOMPART M, GARCIA-JARES C, et al. Development of a high-throughput method for the determination of organochlorinated compounds, nitromusks and pyrethroid insecticides in indoor dust[J]. Journal of Chromatography A, 2007, 1174(1/2):112-124.
    [24] VAN DEN EEDE N, DIRTU A C, NEELS H, et al. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust[J]. Environment International, 2011, 37(2):454-461.
    [25] HE C T, ZHENG J, QIAO L, et al. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of southern China and implications for human exposure[J]. Chemosphere, 2015, 133:47-52.
    [26] ECHA (European Chemical Agency). European Union Risk Assessment Report:1-(5,6,7,8-TETRAHYDRO-3,5,5,6,8,8-HEXAMETHYL-2-NAPTHYL)ETHAN-1-ONE(AHTN)[R]. Luxembourg:Office for Official Publications of the European Communities, 2008.
    [27] ECHA (European Chemical Agency). European Union Risk Assessment Report:(1,3,4,6,7,8-HEXAHYDRO-4,6,6,7,8,8-HEXAMETHYLIN-DENO[5,6-C].PYRAN-HHCB)[R]. Luxembourg:Office for Official Publications of the European Communities, 2008.
    [28] ECHA (European Chemical Agency). European Union Risk Assessment Report:4'-TERT-BUTYL-2',6'-DIMETHYL-3',5'-DINITROACETOPHENONE(MUSK KETONE)[R]. Luxembourg:Office for Official Publications of the European Communities, 2005.
    [29] TRABALÓN L, CANO-SANCHO G, POCURULL E, et al. Exposure of the population of Catalonia (Spain) to musk fragrances through seafood consumption risk assessment[J]. Environmental Research, 2015, 143:116-122.
    [30] STAPLETON H M, KLOSTERHAUS S, EAGLE S, et al. Detection of organophosphate flame retardants in furniture foam and U.S. house dust[J]. Environmental Science & Technology, 2009, 43(19):7490-7495.
    [31] AUDY O, MELYMUK L, VENIER M, et al. PCBs and organochlorine pesticides in indoor environments-A comparison of indoor contamination in Canada and Czech Republic[J]. Chemosphere, 2018, 206:622-631.
    [32] ABDALLAH M A-E, PAWAR G, HARRAD S. Human dermal absorption of chlorinated organophosphate flame retardants:implications for human exposure[J]. Toxicology and Applied Pharmacology, 2016, 291:28-37.
    [33] SCHREDER E D, UDING N, LA GUARDIA M J. Inhalation a significant exposure route for chlorinated organophosphate flame retardants[J]. Chemosphere, 2016, 150:499-504.
  • 加载中
计量
  • 文章访问数:  1372
  • HTML全文浏览数:  1372
  • PDF下载数:  38
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-15

广州市不同微环境室内灰尘中合成麝香分布及健康风险初步评价

    通讯作者: 曾祥英, E-mail: zengxy@gig.ac.cn
  • 1. 有机地球化学国家重点实验室, 广东省环境资源利用与保护重点实验室, 中国科学院广州地球化学研究所, 广州, 510640;
  • 2. 中国科学院大学, 北京, 100049;
  • 3. 广东省环境科学研究院, 广州, 510045
基金项目:

中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC018-02)和国家重点研发计划(2017YFC0212003)资助.

摘要: 本文采集了广州市不同微环境(居民家庭、办公室、化学前处理实验室和仪器房)室内灰尘45个,并研究了灰尘中9种合成麝香(synthetic musks,SMs)的含量与分布.灰尘中合成麝香总浓度(∑SMs)范围为17.6—1153 ng·g-1,在国内外处于较低水平,主要化合物为佳乐麝香(HHCB)、吐纳麝香(AHTN)和酮麝香(MK).相关性分析结果显示,HHCB、AHTN和MK可能有相近的来源和相似的环境行为.不同微环境中的SMs存在显著差异(P<0.05),家庭灰尘中∑SMs(49.6—1153 ng·g-1)含量要显著高于其他3种微环境.健康风险评估结果表明仅灰尘摄入这一暴露途径,SMs对成人和幼童所致健康风险有限.

English Abstract

参考文献 (33)

目录

/

返回文章
返回