大气颗粒物中环境持久性自由基(EPFRs)的来源、生成机制及环境效应研究进展

李豪, 孙浩堯, 陈庆彩. 大气颗粒物中环境持久性自由基(EPFRs)的来源、生成机制及环境效应研究进展[J]. 环境化学, 2020, (12): 3318-3326. doi: 10.7524/j.issn.0254-6108.2019091603
引用本文: 李豪, 孙浩堯, 陈庆彩. 大气颗粒物中环境持久性自由基(EPFRs)的来源、生成机制及环境效应研究进展[J]. 环境化学, 2020, (12): 3318-3326. doi: 10.7524/j.issn.0254-6108.2019091603
LI Hao, SUN Haoyao, CHEN Qingcai. Advances in research on sources, formation mechanisms and environmental effects of environmentally persistent free radicals (EPFRs) in atmospheric particulates[J]. Environmental Chemistry, 2020, (12): 3318-3326. doi: 10.7524/j.issn.0254-6108.2019091603
Citation: LI Hao, SUN Haoyao, CHEN Qingcai. Advances in research on sources, formation mechanisms and environmental effects of environmentally persistent free radicals (EPFRs) in atmospheric particulates[J]. Environmental Chemistry, 2020, (12): 3318-3326. doi: 10.7524/j.issn.0254-6108.2019091603

大气颗粒物中环境持久性自由基(EPFRs)的来源、生成机制及环境效应研究进展

    通讯作者: 陈庆彩, E-mail: chenqingcai@sust.edu.cn
  • 基金项目:

    国家自然科学基金(41877354,41703102)和陕西省自然科学基金(2018JM4011,2019JQ-181)资助.

Advances in research on sources, formation mechanisms and environmental effects of environmentally persistent free radicals (EPFRs) in atmospheric particulates

    Corresponding author: CHEN Qingcai, chenqingcai@sust.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(41877354,41703102) and Natural Science Foundation of Shaanxi Province(2018JM4011,2019JQ-181).
  • 摘要: 环境持久性自由基(environmentally persistent free radicals,EPFRs)是相对传统短寿命自由基提出的一类广泛存在于各种环境介质中并具有潜在环境风险的物质.在大气环境中,由于大气颗粒物的来源广泛、迁移性强,使得其含有的EPFRs的影响范围较广.近年来EPFRs被认为是大气污染健康风险因子而广受关注.本文主要概述大气颗粒物中EPFRs的国内外研究进展,同时总结EPFRs的来源、生成机制及环境效应,并展望了EPFRs未来的研究方向.
  • 加载中
  • [1] 朱利中.环境化学[M].北京:高等教育出版社, 2011:55. ZHU L Z.Environmental Chemistry[M]. Beijing:Higher Education Press, 2011:55(in Chinese).
    [2] 韩林,陈宝梁.环境持久性自由基的产生机理及环境化学行为[J].化学进展, 2017, 29(9):1008-1020.

    HAN L, CHEN B L.The mechanism of environmentally persistent free radicals and environmental chemical behavior[J]. Chemical Progress, 2017, 29(9):1008-1020(in Chinese).

    [3] GEHLING W,DELLINGER B. Environmentally persistent free radicals and their lifetimes in PM2.5[J]. Environmental Science & Technology, 2013, 47:8172-8178.
    [4] LOMNICKI S, TRUONG H, VEJERANO, E, et al. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter[J]. Environmental Science &Technology, 2008, 42:4982-4988.
    [5] VEJERANO E, LOMNICK S, DELLINGER B. Formation and stabilization of combustiongenerated environmentally persistent free radicals on an Fe(Ⅲ)2O3/silica surface[J]. Environmental Science & Technology, 2011, 45:589-594.
    [6] VEJERANO E, LOMNICKS,DELLINGER B. Lifetime of combustion-generated environmentally persistent free radicals on Zn(Ⅱ) and other transition metal oxides[J]. Jouranl of Environmental Monitoring, 2012, 14:2803-2806.
    [7] CHEN Q, SUN H, WANG J, et al. Long-life type-The dominant fraction of EPFRs in combustion sources and ambient fine particles in Xi'an[J]. Atmospheric Environment, 2019, 219:117059-117063.
    [8] NWOSU U, ROY A, DELA C, et al. Formation of environmentally persistent free radical (EPFR) in iron (Ⅲ) cation-exchanged smectiteclay[J]. Environment Science Processes Impacts, 2016, 18:42-50.
    [9] LYONS M J, GIBSON J F, INGRAM D J E. Free-radicals produced in cigarette smoke[J]. Nature,1958, 181(4614):1003-1004.
    [10] INGRAM D, TAPLEY J, JACKSON R, et al. Paramagnetic resonance in carbonaceous Solids[J]. Nature, 1954, 174:797-798.
    [11] GREEN U, AIZENSHTAT Z, RUTHSTEIN S, et al. Stable radicals formation in coals undergoing weathering:Effect of coal rank[J]. Physical Chemistry Chemical Physics, 2012, 14:13046-13052.
    [12] LIU J, JIANG X, SHEN J, et al. Chemical properties of superfine pulverized coal particles. Part 1. Electron paramagnetic resonance analysis of free radical characteristics[J]. Advanced Powder Technology, 2014, 25:916-925.
    [13] PETRAKIS L, GRANDY D. Electron spin resonance spectrometric study of free radicals in coals[J]. Analytical Chemistry, 1978, 50:303-308.
    [14] LIAO S, PAN B, LI H. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings[J]. Environmental Science & Technology, 2014, 48(15):8581-8587.
    [15] FANG G, GAO J, LIU C. Key role of persistent free radicals in hydrogen peroxide activation by biochar:Implications to organic contaminant degradation[J]. Environmental Science & Technology, 2014, 48(3):1902-1910.
    [16] FANG G, GAO J, LIU C. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation[J]. Environmental Science & Technology, 2015, 49(9):5645-5653.
    [17] FANG G, ZHU C, DIONYSIOU D. Mechanism of hydroxyl radical generation from biochar suspensions:Implications to diethyl phthalate degradation[J]. Bioresource Technology, 2015, 176:210-217.
    [18] QIN Y, LI G, GAO Y, et al. Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water:A critical review[J]. Water Research, 2018, 137:130-143.
    [19] ZHAO N, YIN Z, LIU F. Environmentally persistent free radicals mediated removal of Cr(Ⅵ) from highly saline water by corn straw biochars[J]. Bioresource Technology, 2018, 260:294-301.
    [20] JEZIERSKI A, CZECHOWSKI F, JERZYKIEWICZ M, et al. Electron paramagnetic resonance (EPR) studies on stable and transient radicals in humic acids from compost, soil, peat and brown coal[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2000, 56(2):379-385.
    [21] MARTIN-NETO L, ROSELL R and SPOSITO G. Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence[J]. Geoderma, 1998, 81:305-311.
    [22] RIVERO C, SENESI N, PAOLINI J, et al. Characteristics of humic acids of some Venezuelan soils[J]. Geoderma, 1998, 81(3/4):227-239.
    [23] WATANABE A, MCPHAIL D, MAIE N, et al. Electron spin resonance characteristics of humic acids from a wide range of soil types[J]. Organic Geochemistry, 2005, 36(7):981-990.
    [24] YABUTA H, FUKUSHIMA M, KAWASAKI M, et al. Multiple polar components in poorly-humified humic acids stabilizing free radicals:Carboxyl and nitrogen-containing carbons[J].Organic Geochemistry, 2008, 39(9):1319-1335.
    [25] YANG J, PAN B, LI H. Degradation of p-Nitrophenol on biochars:Role of persistent free radicals[J]. Environmental Science & Technology, 2016, 50(2):694-700.
    [26] KIRURI L W, DELLINGER B, LOMNICKI S. Tar balls from deep water horizon oil spill:Environmentally persistent free radicals(EPFRs) formation during crude weathering[J]. Environmental Science & Technology, 2013, 47(9):4220-4226.
    [27] LI H, GUO H Y, PAN B, et al. Catechol degradation on hematite/silica-gas interface as affected by gas composition and the formation of environmentally persistent free radicals[J]. Scientific Reports, 2016, 6:24494-24502.
    [28] LUO L, WU D, DAI D. Synergistic effects of persistent free radicals and visible radiation on peroxymonosulfate activation by ferric citrate for the decomposition of organic contaminants[J]. Applied Catalysis B:Environmental, 2017, 205:404-411.
    [29] KHACHATRYAN L, VEJERANO E, LOMNICKI S, et al. Environmentally persistent free radicals (EPFRs)-1.Generation of reactive oxygen species in aqueous solutions[J]. Environmental Science & Technology, 2011,45(19):8559-8566.
    [30] KHACHATRYAN L, DELLINGER B. Environmentally persistent free radicals (EPFRs)-2. are free hydroxyl radicals generated in aqueous solutions?[J]. Environmental Science & Technology, 2011, 45(21):9232-9239.
    [31] YANG L, LIU G, ZHENG M, et al. Highly elevated levels and particle-size distributions of environmentally persistent free radicals in haze-associated atmosphere[J]. Environmental Science & Technology, 2017, 51(14):7936-7944.
    [32] DELLINGER B, LOMNICKI S, KHACHATRYAN L, et al. Formation and stabilization of persistent free radicals[J]. Proceedings of the Combustion Institute, 2007, 31(1):521-528.
    [33] CHEN Q, WANG M, WANG Y, et al. Rapid determination of environmentally persistent free radicals (EPFRs) in atmospheric particles with a quartz sheet-based approach using electron paramagnetic resonance(EPR) spectroscopy[J]. Atmospheric Environment, 2018, 184:140-145.
    [34] DELLINGER B, LOMNICKI S M, COOK R L, et al. Effect of low temperature thermal treatmenton soils contaminated with pentachlorophenol and environmentally persistent free radicals[J]. Environmental Science &Technology, 2012, 46(11):5971-5978.
    [35] WANG P, PAN B, LI H, et al. The overlooked occurrence of environmentally persistent free radicals in an area with low-rank coal burning, Xuanwei, China[J]. Environmental Science & Technology, 2018, 52(3):1054-1061.
    [36] OYANA T, LOMNICKI S, GUO C, et al. A scalable field study protocol and rationale for passive ambient air sampling:A spatial phytosampling for leaf data collection[J]. Environmental Science & Technology, 2017, 51(18):10663-10673.
    [37] ARANGIO A, TONG H, SOCORRO J, et al. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles[J]. Atmospheric Chemistry Physics, 2016, 16(20):13105-13119.
    [38] WANG Y, LI S, WANG M, et al. Source apportionment of environmentally persistent free radicals (EPFRs) in PM2.5 over Xi'an, China[J]. Science of the Total Environment, 2019, 689(6):193-202.
    [39] CHEN Q, SUN H, MU Z, et al. Characteristics of environmentally persistent free radicals in PM2.5:Concentrations, species and sources in Xi'an, Northwestern, China[J]. Environmental Pollution, 2019, 247:18-26.
    [40] CHEN Q, WANG M, SUN H, et al. Enhanced health risks from exposure to environmentally persistent free radicals and the oxidative stress of PM2.5 from Asian dust storms in Erenhot, Zhangbei and Jinan, China[J]. Environment International, 2018, 121:260-268.
    [41] LI G, WU S, KUANG M, et al. Studies on the g-factors of the copper(Ⅱ)-oxygen compounds[J]. Structural Chemistry, 2017, 58(4):700-705.
    [42] YU T, WANG J, SHENM, et al. NH3-SCR over Cu/SAPO4-3 catalysts with various acid contents and low Cu loading[J]. Catalysis Science & Technology, 2013, 3(12):3234-3241.
    [43] NIKITENKO V. Luminescence and EPR of zinc oxide (review)[J]. Journal of Applied Spectroscopy, 1992, 57(5/6):783-798.
    [44] ARASHIRO M, LIN Y, SEXTON K, et al. In vitro exposure to isoprene-derived secondary organic aerosol by direct deposition and its effects on COX-2 and IL-8 gene expression[J]. Atomspheric Chemistry Physics, 2016, 16(22):14079-14090.
    [45] CHEN Q, SUN H, WANG Y, et al. Environmentally persistent free radical (EPFR) formation by visible-light illumination of the organic matter in atmospheric particles[J]. Environmental Science & Technology, 2019, 53:10053-10061.
    [46] KRAMER A, RATTANAVARAHA W, ZHANG Z, et al. Assessing the oxidative potential of isoprene-derived epoxides and secondary organic aerosol[J]. Atomspheric Environmental, 2016, 130:211-218.
    [47] LIN Y, ARASHIRO M, MARTIN E, et al. Isoprene-derived secondary organic aerosol induces the expression of oxidative stress response genes in human lung cells[J]. Environmental Science & Technology Letters, 2016, 3(6):250-254.
    [48] LIN Y, ARASHIRO M, CLAPP P, et al. Gene expression profiling in human lung cells exposed to isoprene-derived secondary organic aerosol[J]. Environmental Science & Technology, 2017, 51(14):8166-8175.
    [49] TUET W, CHEN Y, FOK S, et al. Inflammatory responses to secondary organic aerosols (SOA) generated from biogenic and anthropogenic precursors[J]. Atomspheric Chemistry Physics, 2017, 17(18):11423-11440.
    [50] TUET W, CHEN Y, XU L, et al. Chemical oxidative potential of secondary organic aerosol (SOA) generated from the photooxidation of biogenic and anthropogenic volatile organic compounds[J]. Atomspheric Chemistry Physics, 2017, 17(2):839-853.
    [51] ANDREOZZI L, CASTELVETRO V, CIARDELLI G, et al. Free radical generation upon plasma treatment of cotton fibers and their initiation efficiency in surface-graft polymerization[J]. Journal of Colloid & Interface Science, 2005, 289(2):455-465.
    [52] PAN B, LI H, LANG D, et al. Environmentally persistent free radicals:Occurrence, formation mechanisms and implications[J]. Environmental Pollution, 2019,248(5):320-331.
    [53] YANG L L, LIU G R, ZHENG M H, et al. Pivotal roles of metal oxides in the formation of environmentally persistent free radicals[J]. Environmental Science & Technology, 2017, 51(21):12329-12336.
    [54] KIRURI L, KHACHATRYAN L, DELLINGER B, et al. Effect of Copper Oxide Concentration on the Formation and Persistency of Environmentally Persistent Free Radicals (EPFRs) in Particulates[J]. Environmental Science & Technology, 2014, 48(4):2212-2217.
    [55] FELD-COOK E, BOVENKAMP-LANGLOIS G, LOMNICKI S. The Effect of Particulate Matter Mineral Composition on Environmentally Persistent Free Radical (EPFR) Formation[J]. Environmental Science & Technology, 2017, 51(18):10396-10402.
    [56] CHEN Q, SUN H, WANG M, et al. Dominant fraction of EPFRs from nonsolvent-extractable organic matter in fine particulates over Xi'an, China[J]. Environment Science & Technology, 2018, 52:9646-9655.
    [57] TONG H, LAKEY P, ARANGIO A, et al. Reactive oxygen species formed by secondary organic aerosols in water and surrogate lung fluid[J]. Environmental Science & Technology, 2018, 52(20):11642-11651.
    [58] ROBERTSON D, PRINCE R, BOWYER J, et al. Thermodynamic properties of the semiquinone and its binding site in the ubiquinol-cytochrome c (c2) oxidoreductase of respiratory and photosynthetic systems[J]. The Journal of Biological Chemistry, 1984, 259(3):1758-1763.
    [59] VEJERANO E, LOMNICKI S, DELLINGER B. Formation and stabilization of combustion-generated, environmentally persistent radicals on Ni (Ⅱ) O supported on a silica surface[J]. Environment Science & Technology, 2012, 46(17):9406-9411.
    [60] BORROWMAN C, ZHOU S, BURROW T, et al. Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds[J]. Physical Chemistry Chemical Physics, 2015, 18(1):205-212.
    [61] LI H, PAN B, LIAO S, et al. Formation of environmentally persistent free radicals as the mechanism for reduced catechol degradation on hematite-silica surface under UV irradiation[J]. Environmental Pollution, 2014, 188:153-158.
    [62] VEJERANO E, RAO G, KHACHATRYAN L, et al. Environmentally persistent free radicals:insights on a new class of pollutants[J]. Environment Science & Technology, 2018, 52(5):2468-2481.
    [63] LIEKE T, ZHANG X, STEINBERG C, et al. Overlooked risks of biochars:Persistent free radicals trigger neurotoxicity in Caenorhabditis elegans[J]. Environment Science & Technology, 2018, 52(14):7981-7987.
    [64] GUENTHER A. Atmospheric chemistry:Are plant emissions green[J]. Nature, 2008, 452(7188):701-702.
    [65] ROHRER F, BERRESHEIM H. Strong correlation between levels of tropospheric hydroxy radicals and solar ultraviolet radiation[J]. Nature, 2006, 442(7099):184-187.
    [66] LELIEVELD J, BUTLER T M, CROWLEY J N, et al. Atmospheric oxidation capacity sustained by a tropical forest[J]. Nature, 2008, 452(7188):737-740.
    [67] GEHLING W, KHACHATRYAN L, DELLINGER B. Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5[J]. Environmental Science & Technology, 2014, 48(8):4266-4272.
    [68] WENBERG P O. Atmospheric chemistry:Radicals follow the Sun[J]. Nature, 2006, 442(7099):145-146.
    [69] BERNDT T, KULMALA M. Rapid formation of sulfuric acid particles at nearat-mospheric conditions[J]. Science, 2005, 307(5710):698-700.
    [70] 耿春梅, 杜莎莎, 殷宝辉, 等. 异戊二烯与OH自由基光化学反应的二次有机气溶胶的生成[J]. 中国科学:化学, 2011,41(7):1206-1214.

    GENG C M, DU S S, YIN B H, et al.Generation of secondary organic aerosols by photochemical reaction of isoprene with OH radical[J].Chinese Science:Chemistry, 2011, 41(7):1206-1214(in Chinese).

    [71] 陈文泰, 邵敏, 袁斌, 等. 大气中挥发性有机物(VOCs)对二次有机气溶胶(SOA)生成贡献的参数化估算[J]. 环境科学学报, 2013,33(1):163-172.

    CHEN W T, SHAO M, YUAN B, et al. Parametric estimation of contribution of volatile organic compounds (VOCs) in the atmosphere to secondary organic aerosols (SOA)[J]. Journal of Environmental Science, 2013, 33(1):163-172(in Chinese).

    [72] 王振亚, 郝立庆, 张为俊. 二次有机气溶胶形成的化学过程[J].化学进展, 2005, 17(4):732-739.

    WANG Z Y, HAO L Q, ZHANG W J. Chemical process of secondary organic aerosol formation[J].Chemical Progress, 2005, 17(4):732-739(in Chinese).

    [73] LI M, BAO F, ZHANG Y, et al. Role of elemental carbon in the photochemical aging of soot[J]. Proceedings of the National Academy of Sciences, 2018, 115(30):7717-7722..
    [74] SARAVIA J, LEE G I, LOMNICKI S, et al. Particulate matter containing environmentally persistent free radicals and adverse infant respiratory health effects:A review[J]. Journal of Biochemical & Molecular Toxicology, 2013, 27(1):56-68.
    [75] SHRILATHA B, SLAWO L, MCAVEY K, et al. Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity[J]. Particle & Fibre Toxicology, 2009, 6(1):11-24.
    [76] BALAKRISHNA S, SARAVIA J, THEVENOT P, et al. Environmentally persistent free radicals induce airway hyperresponsiveness in neonatal rat lungs[J]. Particle & Fibre Toxicology, 2011, 8(1):11-22.
  • 加载中
计量
  • 文章访问数:  3387
  • HTML全文浏览数:  3387
  • PDF下载数:  118
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-16

大气颗粒物中环境持久性自由基(EPFRs)的来源、生成机制及环境效应研究进展

    通讯作者: 陈庆彩, E-mail: chenqingcai@sust.edu.cn
  • 陕西科技大学环境科学与工程系, 西安, 710021
基金项目:

国家自然科学基金(41877354,41703102)和陕西省自然科学基金(2018JM4011,2019JQ-181)资助.

摘要: 环境持久性自由基(environmentally persistent free radicals,EPFRs)是相对传统短寿命自由基提出的一类广泛存在于各种环境介质中并具有潜在环境风险的物质.在大气环境中,由于大气颗粒物的来源广泛、迁移性强,使得其含有的EPFRs的影响范围较广.近年来EPFRs被认为是大气污染健康风险因子而广受关注.本文主要概述大气颗粒物中EPFRs的国内外研究进展,同时总结EPFRs的来源、生成机制及环境效应,并展望了EPFRs未来的研究方向.

English Abstract

参考文献 (76)

目录

/

返回文章
返回