三峡库区消落带紫色潮土结合态氮转化过程
Transformation process of purple alluvial soil combined nitrogen in water level fluctuation zone of the Three Gorges Reservoir Area
-
摘要: 消落带土壤结合态氮转化过程是影响其向周边水体释放的重要因素.为此,以三峡库区消落带紫色潮土为研究对象,采用实验室模拟培养的方法探讨了这一科学问题.结果表明,好氧和厌氧培养0-3 d,土壤离子交换态氮(IEF-N)含量分别增加20.85 mg·kg-1和28.78 mg·kg-1;铁锰氧化物结合态氮(IMOF-N)含量分别减少30.04 mg·kg-1和31.49 mg·kg-1;有机及硫化物结合态氮(OSF-N)含量分别减少84.63 mg·kg-1和95.38 mg·kg-1.好氧和厌氧培养期间IMOF-N和OSF-N含量均与IEF-N含量极显著负相关.好氧和厌氧培养0-3 d,IMOF-N和OSF-N部分(低于25%)转化为IEF-N.与其它时期相比,落干和淹水后0-3 d,消落带紫色潮土氮素释放风险更大.研究结果有助于准确评估消落带土壤氮素向三峡水库释放的风险.Abstract: The transformation process of soil combined nitrogen (N) is an essential factor, which affects N release from the soil of water level fluctuation (WLF) zone to the surrounding water body. Therefore, purple alluvial soils in the WLF zone of Three Gorges Reservoir Area were collected for the discussion of the above scientific problem in an incubation experiment. The results showed that during aerobic and anaerobic incubation of 0-3 days, soil N of ion-exchangeable form (IEF-N) content increased by 20.85 mg·kg-1 and 28.78 mg·kg-1, respectively. Meanwhile, soil N of iron-manganese oxides form (IMOF-N) content decreased by 30.04 mg·kg-1 and 31.49 mg·kg-1, respectively; Soil N of organic matter-sulfide form (OSF-N) content decreased by 84.63 mg·kg-1 and 95.38 mg·kg-1, respectively. Besides, IMOF-N and OSF-N content significantly correlated with IEF-N content during aerobic and anaerobic incubation. In summary, IMOF-N and OSF-N partly (lower than 25%) transformed to IEF-N during aerobic and anaerobic incubation of 0-3 days. Thus, compared with the other period, the N release risk in purple alluvial soil was much higher during the dry and flooding periods of 0-3 days in the WLF zone. The results were helpful for accurately assessing the risk of N release from the soil of WLF zone to the Three Gorges Reservoir.
-
-
[1] BAO Y, GAO P, HE X. The water-level fluctuation zone of Three Gorges Reservoir-A unique geomorphological unit[J]. Earth-Science Reviews, 2015, 150:14-24. [2] 林俊杰, 刘丹, 张帅, 等. 淹水-落干与季节性温度升高耦合过程对消落带沉积物氮矿化影响[J]. 环境科学, 2017, 38(2):555-562. LIN J, ZHEN D, ZHANG S, et al. Effect of coupling process of wetting-drying cycles and seasonal temperature increasing on sediment nitrogen mineralization in the water level fluctuating zone[J]. Environmental Science, 2017, 38(2):555-562(in Chinese).
[3] JIANG Q, XU Z, HAO Y, et al. Dynamics of soil labile carbon and nitrogen pools in riparian zone of Wyaralong Dam in Southeast Queensland, Australia[J]. Journal of Soils and Sediments, 2017, 17(4):1030-1044. [4] ZHANG A, CORNWELL W, LI Z, et al. Dam effect on soil nutrients and potentially toxic metals in a reservoir riparian zone[J]. Clean-Soil, Air, Water, 2019, 47(1):1700497. [5] YANG Z, LIU D, JI D, et al. Influence of the impounding process of the Three Gorges Reservoir up to water level 172.5 m on water eutrophication in the Xiangxi Bay[J]. Science China Technological Sciences, 2010, 53(4):1114-1125. [6] YE L, HAN X, XU Y, et al. Spatial analysis for spring bloom and nutrient limitation in Xiangxi Bay of Three Gorges Reservoir[J]. Environmental Monitoring and Assessment, 2007, 127(1-3):135-145. [7] MARIANO E, JONES D L, HILL P W, et al. Mineral nitrogen forms alter 14C-glucose mineralization and nitrogen transformations in litter and soil from two sugarcane fields[J]. Applied Soil Ecology, 2016, 107:154-161. [8] NIEDER R, BENBI D K, SCHERER H W. Fixation and defixation of ammonium in soils:A review[J]. Biology and Fertility of Soils, 2011, 47(1):1-14. [9] LIU Y L, ZHANG B, LI C L, et al. Long-term fertilization influences on clay mineral composition and ammonium adsorption in a rice paddy soil[J]. Soil Science Society of America Journal, 2008, 72(6):1580-1590. [10] 刘波, 周锋, 王国祥, 等. 沉积物氮形态与测定方法研究进展[J]. 生态学报, 2011, 31(22):6947-6958. LIU B, ZHOU F, WANG G X, et al. Research progress on forms of nitrogen and determination in the sediments[J]. Acta Ecologica Sinica, 2011, 31(22):6947-6958(in Chinese).
[11] 马红波, 宋金明, 吕晓霞, 等. 渤海沉积物中氮的形态及其在循环中的作用[J]. 地球化学, 2003, 32(1):48-54. MA H B, SONG J M, LÜ X X, et al. Nitrogen forms and their functions in recycling of the Bohai Sea sediments[J]. Geochimica, 2003, 32(1):48-54(in Chinese).
[12] LI X, HOU L, LIU M, et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland[J]. Environmental Science and Technology, 2015, 49(19):11560-11568. [13] DING L J, AN X L, LI S, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science and Technology, 2014, 48(18):10641-10647. [14] 杨杰,夏品华,林陶, 等.贵州草海湿地不同水深梯度下沉积物铁形态分布特征[J]. 环境化学, 2019, 38(4):813-821. YANG J, XIA P H, LIN T, et al. Distribution characteristics of iron speciation in sediments of Guizhou Caohai wetland under different water depths[J]. Environmental Chemistry, 2019, 38(4):813-821(in Chinese).
[15] LIU Y, WANG C, HE N, et al. A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization:Latitudinal patterns and mechanisms[J]. Global Change Biology, 2017, 23(1):455-464. [16] OSTERHOLZ W R, RINOT O, LIEBMAN M, et al. Can mineralization of soil organic nitrogen meet maize nitrogen demand?[J]. Plant and Soil, 2017, 415(1-2):73-84. [17] REUSSI C N, WYNGAARD N, ORCELLET J, et al. Predicting field-apparent nitrogen mineralization from anaerobically incubated nitrogen[J]. Soil Science Society of America Journal, 2018, 82(2):502-508. [18] XU X, HUI D, KING A W, et al. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems[J]. Scientific Reports, 2015, 5:17445. [19] 张彬, 陈猷鹏, 方芳, 等.三峡库区淹没消落区土壤氮素形态及分布特征[J]. 环境科学学报, 2012, 32(5):1126-1133. ZHANG B, CHEN Y P, FANG F, et al. Nitrogen forms and their distribution characteristics in the soils of water level fluctuation zone in the central Three Gorges Reservoir[J]. Acta Scientiae Circumstantiae, 2012, 32(5):1126-1133(in Chinese).
[20] 张雷, 秦延文, 郑丙辉, 等. 三峡入库河流大宁河回水区浸没土壤及消落带土壤氮形态及分布特征[J]. 环境科学, 2009, 30(10):2884-2890. ZHANG L, QIN Y W, ZHENG B H, et al. Nitrogen forms and its distribution character in immerged and water-level fluctuating zone soils of the backwater reach from input river of Three Gorges Reservoir[J]. Environmental Science, 2009, 30(10):2884-2890(in Chinese).
[21] 何立平, 刘丹, 于志国, 等. 三峡库区干支流落干期消落带土壤可转化态氮含量及分布特征[J]. 环境科学, 2016, 37(3):950-954. HE L P, LIU D, YU Z G, et al. Distribution and content of transferable nitrogen in the soil of water level fluctuating zones of mainstream and its tributaries of Three Gorges Reservoir Areas during the dry period[J]. Environmental Science, 2016, 37(3):950-954(in Chinese).
[22] 林俊杰, 张帅, 杨振宇, 等. 干湿循环对三峡支流消落带沉积物中可转化态氮及其形态分布的影响[J]. 环境科学, 2015, 36(7):2459-2464. LIN J J, ZHANG S, YANG Z Y, et al. Effect of drought and subsequent re-wetting cycles on transferable nitrogen and Its form distribution in the sediment of water level fluctuating zone in the tributary of Three Gorge Reservoir Areas[J]. Environmental Science, 2015, 36(7):2459-2464(in Chinese).
[23] 王晓锋, 袁兴中, 刘红,等. 三峡库区消落带4种典型植物根际土壤养分与氮素赋存形态[J]. 环境科学, 2015, 36(10):3662-3673. WANG X F, YUAN X Z, LIU H, et al. Nutrient characteristics and nitrogen forms of rhizosphere soils under 4 typical plants in the littoral zone of TGR[J]. Environmental Science, 2015, 36(10):3662-3673(in Chinese).
[24] BLAGODATSKAYA E, YUYUKINA T, BLAGODATSKY S, et al. Turnover of soil organic matter and of microbial biomass under C3-C4 vegetation change:Consideration of 13C fractionation and preferential substrate utilization[J]. Soil Biology & Biochemistry, 2011, 43(1):159-166. [25] 袁从禕. 土壤机械组成的比重计速测法[J]. 土壤通报, 1964, 1(5):1-3. YUAN C W. Rapid determination method of soil mechanical composition[J]. Chinese Journal of Soil Science, 1964, 1(5):1-3(in Chinese).
[26] 王虹, 崔桂霞. 用氯化钡缓冲液法测定土壤阳离子交换量[J]. 土壤, 1989, 21(1):49-51. WANG H, CUI G X. The determination of soil cation exchange capacity by the method of Barium chloride buffer solution[J]. Soil, 1989, (1):49-51(in Chinese).
[27] JANSSEN B H. Nitrogen mineralization in relation to C:N ratio and decomposability of organic materials, Progress in Nitrogen Cycling Studies[M]. Berlin:Springer, 1996:69-75. [28] GHALY A, RAMAKRISHNAN V. Nitrogen sources and cycling in the ecosystem and its role in air, water and soil pollution:A critical review[J]. Journal of Pollution Effects and Control, 2015, 3(2):1-26. [29] WANG S, RADNY D, HUANG S, et al. Nitrogen loss by anaerobic ammonium oxidation in unconfined aquifer soils[J]. Scientific Reports, 2017, 7:40173. [30] WU J, HONG Y, HE X, et al. Anaerobic ammonium oxidation in acidic red soils[J]. Frontiers in Microbiology, 2018, 9:2142. [31] BAO P, LI G X. Sulfur-driven iron reduction coupled to anaerobic ammonium oxidation[J]. Environmental Science and Technology, 2017, 51(12):6691-6698. [32] MOGOLLÓN J M, MEWES K, KASTEN S. Quantifying manganese and nitrogen cycle coupling in manganese-rich, organic carbon-starved marine sediments:Examples from the Clarion-Clipperton fracture zone[J]. Geophysical Research Letters, 2016, 43(13):7114-7123. [33] LIU S, LIN F, WU S, et al. A meta-analysis of fertilizer-induced soil NO and combined NO+ N2O emissions[J]. Global Change Biology, 2017, 23(6):2520-2532. [34] GUGGENBERGER G. Humification and mineralization in soils, microorganisms in soils:Roles in genesis and functions[M]. Berlin:Springer, 2005:85-106. [35] OSTERHOLZ W R, RINOT O, SHAVIV A, et al. Predicting gross nitrogen mineralization and potentially mineralization nitrogen using soil organic matter properties[J]. Soil Science Society of America Journal, 2017, 81(5):1115-1126. [36] ZHAO Q, POULSON S R, OBRIST D, et al. Iron-bound organic carbon in forest soils:Quantification and characterization[J]. Biogeosciences, 2016, 13(16):4777-4788. -

计量
- 文章访问数: 2069
- HTML全文浏览数: 2069
- PDF下载数: 29
- 施引文献: 0