川南四座城市PM2.5化学组分污染特征及其源解析

曹佳阳, 樊晋, 罗彬, 张巍, 杜云松, 张莹, 王式功. 川南四座城市PM2.5化学组分污染特征及其源解析[J]. 环境化学, 2021, (2): 559-570. doi: 10.7524/j.issn.0254-6108.2019092901
引用本文: 曹佳阳, 樊晋, 罗彬, 张巍, 杜云松, 张莹, 王式功. 川南四座城市PM2.5化学组分污染特征及其源解析[J]. 环境化学, 2021, (2): 559-570. doi: 10.7524/j.issn.0254-6108.2019092901
CAO Jiayang, FAN Jin, LUO Bin, ZHANG Wei, DU Yunsong, ZHANG Ying, WANG Shigong. Pollution characteristics and source apportionment of PM2.5 in four urban environment of Southern Sichuan[J]. Environmental Chemistry, 2021, (2): 559-570. doi: 10.7524/j.issn.0254-6108.2019092901
Citation: CAO Jiayang, FAN Jin, LUO Bin, ZHANG Wei, DU Yunsong, ZHANG Ying, WANG Shigong. Pollution characteristics and source apportionment of PM2.5 in four urban environment of Southern Sichuan[J]. Environmental Chemistry, 2021, (2): 559-570. doi: 10.7524/j.issn.0254-6108.2019092901

川南四座城市PM2.5化学组分污染特征及其源解析

    通讯作者: 王式功, E-mail: wangsg@cuit.edu.cn
  • 基金项目:

    国家自然科学基金重大研究计划重点支持项目(91644226),国家自然科学基金(41775147),四川省重大科技专项项目(2018SZDZX0023)和成都市科技项目(2019-YF05-00219-SN)资助.

Pollution characteristics and source apportionment of PM2.5 in four urban environment of Southern Sichuan

    Corresponding author: WANG Shigong, wangsg@cuit.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation's Major Research Program Key Support Project (91644226), the National Natural Science Foundation of China (41775147), the Sichuan Provincial Science and Technology Special Project (2018SZDZX0023) and the Chengdu Science and Technology Project (2019-YF05-00219-SN).
  • 摘要: 为探究川南地区大气气溶胶中化学组分与来源特征,于2015年9月—2016年8月在四川盆地南部4个典型代表城市(泸州、内江、宜宾、自贡)采集了226个PM2.5样品,对PM2.5的质量浓度和主要化学组分(水溶性离子和碳质组分)进行测定,并利用颗粒物源解析受体模型对PM2.5来源进行解析.结果表明:川南地区PM2.5日均浓度为46.4—68.0 μg·m-3,均高于国家环境空气质量标准年均PM2.5限值(35.0 μg·m-3).OC、EC和水溶性二次离子(SO42-、NO3-和NH4+)分别占PM2.5质量的15.7%—22.8%、4.2%—6.4%和28.6%—55.8%.PM2.5及其主要化学组分浓度有显著的季节变化,即冬季浓度显著高于其他季节,夏季浓度最低.泸州除夏季外,其他季节SO42-、NO3-同源性较好;其他城市在冬季,SO42-、NO3-同源性较好.NH4+主要存在形式为NH4NO3、(NH42SO4、NH4HSO4.OC、EC来源复杂,主要为机动车源、煤燃烧源和生物质燃烧源.川南地区PM2.5的来源主要受8种因子影响,按总体贡献排序依次为:二次硫酸盐、生物质燃烧、工业源、二次硝酸盐、机动车源、煤燃烧、道路尘埃和建筑尘埃.此外,相比较而言,机动车源贡献在泸州市较凸显,煤燃烧源贡献在宜宾市较凸显.
  • 加载中
  • [1] LIU H, ZHANG L, WU J. A modeling study of the climate effects of sulfate and carbonaceous aerosols over China[J]. Adv Atmos Sci, 2010, 27(6):1276-1288.
    [2] SARNAT J A, SCHWARTZh J, SUH H H. Fine particulate air pollution and mortality in 20 U.S. cities[J]. New England Journal of Medicine, 2001, 344(16):1253-1254.
    [3] 吴兑, 刘啟汉, 梁延刚, 等. 粤港细粒子PM2.5污染导致能见度下降与灰霾天气形成的研究[J]. 环境科学学报, 2012, 32(11):2660-2669.

    WU D, LIU Q H, LIANG Y G, et al. Study on the decrease of visibility and the formation of haze weather caused by fine PM2.5 pollution in Guangdong and Hong Kong[J]. Chinese Journal of Environmental Science, 2012, 32(11):2660-2669(in Chinese).

    [4] RAM K, SARIN M M. Day-night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain:Implications to secondary aerosol formation[J]. Atmos Environ, 2011, 45(2):460-468.
    [5] KUMAR A, SARIN M M. Atmospheric water-soluble constituents in fine and coarse mode aerosols from high-altitude site in western India:Long-range transport and seasonal variability[J]. Atmos Environ, 2010, 44(10):1245-1254.
    [6] TOLIS E I, SARAGA D E, LYTRA M K, et al. Concentration and chemical composition of PM2.5 for a one-year period at Thessaloniki, Greece:A comparison between city and port area[J]. Atmos Environ, 2015, 113:197-207.
    [7] SHEN Z, CAO J, HAN A Z, et al. Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi'an, China[J]. Atmos Environ, 2009, 43(18):2911-2918.
    [8] 陈魁, 银燕, 魏玉香,等. 南京大气PM2.5中碳组分观测分析[J]. 中国环境科学, 2010, 30(8):1015-1020.

    CHEN K, YAN Y, WEI Y X, et al. Observation and analysis of carbon components in atmospheric PM2.5 in Nanjing[J]. China Environmental Science, 2010, 30(8):1015-1020(in Chinese).

    [9] 杨复沫, 贺克斌, 马永亮,等. 北京大气细粒子PM2.5的化学组成[J]. 清华大学学报(自然科学版), 2002,42(12):1605-1608. YANG F M, HE K B, MA Y L, et al. Chemical composition of atmospheric fine particles PM2.5 in Beijing[J]. Journal of Tsinghua University(Science and Technology), 2002, 42(12):1605-1608(in Chinese).
    [10] 徐虹, 毕晓辉, 冯银厂. 中国典型沿海城市PM2.5化学组分特征[C]//2013中国环境科学学会学术年会. 2013. XU H, BI X H, FENG Y C. Characteristics of chemical composition of PM2.5 in typical coastal cities of China[C]//2013

    Annual Conference of Chinese Society of Environmental Sciences, 2013(in Chinese).

    [11] LI X, WANG L, JI D, et al. Characterization of the size-segregated water-soluble inorganic ions in the Jing-Jin-Ji urban agglomeration:Spatial/temporal variability, size distribution and sources[J]. Atmos Environ, 2013, 77:250-259.
    [12] HUANG X, LIU Z, ZHANG J, et al.Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing[J]. Atmos Res, 2016, 168:70-79.
    [13] FENG J L, GUO Z G, ZHANG T R, et al. Source and formation of secondary particulate matter in PM2.5 in Asian continental outflow[J]. J Geophys Res Atmos, 2012, 117(3):1-12.
    [14] PARK S H, SONG B, KIM M C, et al. Study on size distribution of total aerosol and water-soluble ions during an Asian dust storm event at Jeju Island, Korea[J]. Environmental Monitoring and Assessment, 93(1-3):157-183.
    [15] YANG L, ZHOU X, ZHE W, et al. Airborne fine particulate pollution in Jinan, China:Concentrations, chemical compositions and influence on visibility impairment[J]. Atmos Environ, 2012, 55(3):506-514.
    [16] YU S, ZHANG Y, XIE S, et al. Source apportionment of PM2.5 in Beijing by positive matrix factorization[J]. Atmos Environ, 2006, 40(8):1526-1537.
    [17] 林安国, 梁云平, 张战平, 等. 2012-2013年北京市大气PM2.5污染成分分析[J]. 生态环境学报, 2017, 26(7):1174-1179.

    LIN A G, LIANG Y P, ZHANG Z P, et al. Analysis of atmospheric PM2.5 pollution components in Beijing from 2012 to 2013[J]. Journal of Eco-Environment, 2017, 26(7):1174-1179(in Chinese).

    [18] DU H, KONG L, CHENG T, et al. Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols[J]. Atmos Environ, 2011, 45(29):5131-5137.
    [19] LI M, HU M, GUO Q, et al. Seasonal source apportionment of PM2.5 in Ningbo, a coastal city in Southeast China[J]. Aerosol Air Qual Res, 2018, 18(11):2741-2752.
    [20] 李婷苑, 邓雪娇, 范绍佳. 广州地区PM2.5污染特征与外来源输送分析[C]//S18大气物理学与大气环境, 2012. LI T Y, DENG X J, FAN S J. Analysis of PM2.5 pollution characteristics and external source transportation in Guangzhou[C]//S18

    Atmospheric Physics and Atmospheric Environment, 2012(in Chinese).

    [21] WANG H, ZHU B, SHEN L, et al. Water-soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China:Size-fractionated, seasonal variations and sources[J]. Atmos Environ, 2015, 123:370-379.
    [22] YANG D Y, LIU B X, ZHANG D W,et al. Correlation,seasonal and temporal variation of water-soluble ions of PM2.5 in Beijing during 2012-2013[J]. Environ Sci, 2015, 36(3):768-773.
    [23] MA Y, WU D, LIU J, et al. Comparative analysis of water-soluble ions during typical haze processes in dry and wet seasons in Guangzhou[J]. Huanjing Kexue Xuebao/Acta Sci Circumstantiae, 2017, 37(1):73-81.
    [24] WEI Z, WANG L, CHEN M, et al. The 2013 severe haze over the Southern Hebei, China:PM2.5 composition and source apportionment[J]. Atmos Pollut Res, 2014, 5(4):759-768.
    [25] 孙冉, 王成都, 刘国东. 2014年成都市PM2.5污染及其与气象要素的关系[J]. 环境工程, 2015, 34(s1):481-484

    ,608. SUN W, WANG C D, LIU G D. The relationship between PM2.5 pollution in Chengdu and its meteorological factors in 2014[J]. Environmental Engineering, 2015, 34(s1):481-484,608(in Chinese).

    [26] 李友平, 周洪, 张智胜, 等. 成都市城区PM2.5中二次水溶性无机离子污染特征[J]. 环境科学, 2014, 35(12):4439-4445.

    LI Y P, ZHOU H, ZHANG Z S, et al. Pollution characteristics of secondary water-soluble inorganic ions in PM2.5 of Chengdu urban area[J]. Environmental Science, 2014, 35(12):4439-4445(in Chinese).

    [27] 王启元, 陶俊, 任鹏奎,等. 成都市冬季大气PM2.5的化学组成及对能见度的影响[J]. 地球环境学报, 2012, 14(5):1104-1108.

    WANG Q Y, TAO J, REN P K, et al. Chemical composition of PM2.5 in winter and its influence on visibility in Chengdu[J]. Journal of Earth Environment, 2012, 14(5):1104-1108(in Chinese).

    [28] LI L, TAN Q, ZHANG Y, et al. Characteristics and source apportionment of PM2.5 during persistent extreme haze events in Chengdu, southwest China[J]. Environ Pollut, 2017, 230:718-729.
    [29] LIANG X, LI S, ZHANG S,et al. PM2.5 data reliability, consistency, and air quality assessment in five Chinese cities[J]. J Geophys Res Atmos, 2016,121:220-236.
    [30] 余家燕, 王军, 许丽萍, 等. 重庆城区PM2.5化学组分特征及季节变化[J]. 环境工程学报, 2017,11(12):6372-6378.

    YU J Y, WANG J, XU L P, et al. Characteristics and seasonal variation of chemical composition of PM2.5 in Chongqing urban area[J]. Journal of Environmental Engineering, 2017,11(12):6372-6378(in Chinese).

    [31] 任丽红, 周志恩, 赵雪艳, 等. 重庆主城区大气PM10及PM2.5来源解析[J]. 环境科学研究, 2014,27(12):1387-1394.

    REN L H, ZHOU Z E, ZHAO X Y, et al. Source analysis of atmospheric PM10 and PM2.5 in Chongqing urban area[J]. Environmental Science Research, 2014,27(12):1387-1394(in Chinese).

    [32] ZHANG C, ZHOU Z E, ZHAI C Z, et al. Carbon source apportionment of PM2.5 in Chongqing based on local carbon profiles[J]. Environ Sci, 2014,35(3):810-819.
    [33] 陈源, 谢绍东, 罗彬,等. 重庆市主城区大气细颗粒物污染特征与来源解析[J]. 环境科学学报, 2017, 37(7):2420-2430.

    CHEN Y, XIE S D, LUO B, et al. Characteristics and sources of atmospheric fine particulate matter pollution in the main urban area of Chongqing[J].Journal of Environmental Science, 2017, 37(7):2420-2430(in Chinese).

    [34] PAATERO P, TAPPER U. Positive matrix factorization:A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 2010, 5(2):111-126.
    [35] PAATERO P, TAPPER U. Analysis of different modes of factor analysis as least squares fit problems[J]. Chemom Intell Lab Syst, 1993, 18(2):183-194.
    [36] PAATERO P. Least squares formulation of robust non-negative factor analysis[J]. Chemom Intell Lab Syst, 1997, 37(1):23-35.
    [37] PAATERO P, HOPKE P K, SONG X H, et al. Understanding and controlling rotations in factor analytic models[J]. Chemom Intell Lab Syst, 2002, 58(1):253-264.
    [38] WASTON J G, CHOW J C. A wintertime PM2.5 episode at the Fresno, CA, supersite[J]. Atmos Environ, 2002, 36(3):465-475.
    [39] 王妮, 何太蓉, 刘金萍. 重庆城区夏季降水对大气污染物的清除效果分析[J]. 环境工程, 2017, 35(4):69-73.

    WANG N, HE T R, LIU J P. Analysis of the effect of summer precipitation on the removal of atmospheric pollutants in Chongqing urban area[J]. Environmental Engineering, 2017, 35(4):69-73(in Chinese).

    [40] ZHANG R, JING J, TAO J, et al. Chemical characterization and source apportionment of PM2.5 in Beijing:Seasonal perspective[C]//第八届全国大气细及超细粒子技术研讨会暨PM2.5源谱交流会论文集, 2015, 7053-7074.
    [41] WANG H, ZHU B, SHEN L, et al. Water-soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China:Size-fractionated, seasonal variations and sources[J]. Atmos Environ, 2015, 123:370-379.
    [42] HE Y, MA Z, YAO C. The characteristics of PM2.5 in Beijing, China[J]. Atmos Environ, 2001, 35(29):4959-4970.
    [43] WANG P, CAO J J, SHEN Z X, et al. Spatial and seasonal variations of PM2.5 mass and species during 2010 in Xi'an, China[J]. Sci Total Environ, 2015, 508(508C):477-487.
    [44] FENG Y, CHEN Y, GUO H, et al. Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China[J]. Atmos Res, 2009, 92(4):434-442.
    [45] XU L, CHEN X, CHEN J, et al. Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China[J]. Atmos Res, 2012, 104-105(1):264-272.
    [46] LIU B, WU J, ZHANG J, et al. Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China[J]. Environ Pollut, 2017, 222:10-22.
    [47] 安俊琳, 王跃思, 李昕,等. 北京大气中NO、NO2和O3浓度变化的相关性分析[J]. 环境科学, 2007, 28(4):706-711.

    AN J L, WANG Y S, LI W, et al. Correlation analysis of NO, NO2 and O3 concentrations in Beijing atmosphere[J]. Environmental Science, 2007, 28(4):706-711(in Chinese).

    [48] 朱燕舞, 刘文清, 谢品华,等. 夏季城市大气中O3和NO2的观测研究[J]. 大气与环境光学学报, 2008, 3(5):369-376.

    ZHU Y W, LIU W Q, XIE P H, et al. Observational studies of O3 and NO2 in summer urban atmosphere[J]. Journal of Atmospheric and Environmental Optics, 2008, 3(5):369-376(in Chinese).

    [49] MAY A A, NGUYEN N T, PRESTO A A, et al. Gas- and particle-phase primary emissions from in-use, on-road gasoline and diesel vehicles[J]. Atmos Environ, 2014, 88(5):247-260.
    [50] SCHAUER J J, KLEEMAN M J, CASS G R, et al. Measurement of emissions from air pollution sources. 5. C-1-C-32 organic compounds from gasoline-powered motor vehicles[J]. Environmental Science & Technology, 2002, 36(6):1169-1180.
    [51] CHEN Y J, ZHI G R, FENG Y L, et al. Measurements of emission factors for primary carbonaceous particles from residential rawcoal combustion in China[J]. Geophysical Research Letters,2006,33(20):L20815.
    [52] WATSON J G, CHOW J C, HOUCK J E. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in northwestern Colorado during 1995[J]. Chemosphere, 2001, 43(8):1141-1151.
    [53] ANDREAE M O. Soot carbon and excess fine potassium:Long-range transport of combustion-derived aerosols[J]. Science, 1983, 220(4602):1148-1151.
    [54] HUEGLIN C, GEHRIG R, BALTENSPERGER U, et al. Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland[J]. Atmos Environ, 2005, 39(4):637-651.
    [55] CHUANG MT, CHEN YC, LEE C T, et al. Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan[J]. Environ Pollut, 2016, 214:273-281.
    [56] JUN T, TIAOTAO C, RENJIAN Z, et al. Chemical composition of PM2.5 at an urban site of Chengdu in southwestern China[J]. Adv Atmos Sci, 2013, 30(4):1070-1084.
    [57] XIU G, ZHANG D, CHEN J, et al. Characterization of major water-soluble inorganic ions in size-fractionated particulate matters in Shanghai campus ambient air[J]. Atmos Environ, 2004, 38(2):227-236.
    [58] DESHMUKH DK, DEB MK, MKOMA SL. Size distribution and seasonal variation of size-segregated particulate matter in the ambient air of Raipur city, India[J]. Air Qual Atmos Heal, 2013, 6(1):259-276.
    [59] PENG L, DENG Z, SLANINA J, et al. Seasonal and diurnal variations of organic carbon in PM2.5 in Beijing and the estimation of secondary organic carbon[J]. J Geophys Res Atmos, 2009, 114:D00G11.
    [60] CHOW JC, WATSON JG, ASHBAUGH LL, et al. Similarities and differences in PM10 chemical source profiles for geological dust from the San Joaquin Valley, California[J]. Atmos Environ, 2003, 37(9):1317-1340.
    [61] YANG H, JING C, WEN J, et al. Composition and sources of PM2.5 around the heating periods of 2013 and 2014 in Beijing:Implications for efficient mitigation measures[J]. Atmos Environ, 2016, 124:S1352231015300881.
    [62] AMATO F, PANDOLFI M, ESCRIG A, et al. Quantifying road dust resuspension in urban environment by Multilinear Engine:A comparison with PMF2[J]. Atmos Environ, 2009, 43(17):2770-2780.
    [63] WANG H L, ZHUANG Y H, WANG S Y,et al. Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China[J]. Journal of Environmental Sciences, 2008, 20:1323-1327.
    [64] KUANG B Y, LIN P, HUANG X H H, et al. Sources of humic-like substances in the Pearl River Delta, China:Positive matrix factorization analysis of PM2.5 major components and source markers[J]. Atmos Chem Physics, 2015, 15(4):1995-2008.
    [65] 陆炳, 孔少飞, 韩斌,等. 2007年中国大陆地区生物质燃烧排放污染物清单[J]. 中国环境科学, 2011, 31(2):186-194.

    LU B, KONG S F, HAN B, et al. List of pollutants emitted by biomass burning in China in 2007[J]. China Environmental Science, 2011, 31(2):186-194(in Chinese).

    [66] 张智胜, 陶俊, 谢绍东,等. 成都城区PM2.5季节污染特征及来源解析[J]. 环境科学学报, 2013, 33(11):2947-2952.

    ZHANG Z S, TAO J, XIE S D, et al. Characteristics and sources of PM2.5 seasonal pollution in Chengdu urban area[J]. Journal of Environmental Science, 2013, 33(11):2947-2952(in Chinese).

  • 加载中
计量
  • 文章访问数:  1699
  • HTML全文浏览数:  1699
  • PDF下载数:  48
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-29

川南四座城市PM2.5化学组分污染特征及其源解析

    通讯作者: 王式功, E-mail: wangsg@cuit.edu.cn
  • 1. 成都信息工程大学大气科学学院, 高原大气与环境四川省重点实验室, 成都, 610225;
  • 2. 四川省环境政策研究与规划院, 成都, 610041;
  • 3. 四川省生态环境监测总站, 成都, 610091;
  • 4. 遵义院士工作中心, 遵义, 563000
基金项目:

国家自然科学基金重大研究计划重点支持项目(91644226),国家自然科学基金(41775147),四川省重大科技专项项目(2018SZDZX0023)和成都市科技项目(2019-YF05-00219-SN)资助.

摘要: 为探究川南地区大气气溶胶中化学组分与来源特征,于2015年9月—2016年8月在四川盆地南部4个典型代表城市(泸州、内江、宜宾、自贡)采集了226个PM2.5样品,对PM2.5的质量浓度和主要化学组分(水溶性离子和碳质组分)进行测定,并利用颗粒物源解析受体模型对PM2.5来源进行解析.结果表明:川南地区PM2.5日均浓度为46.4—68.0 μg·m-3,均高于国家环境空气质量标准年均PM2.5限值(35.0 μg·m-3).OC、EC和水溶性二次离子(SO42-、NO3-和NH4+)分别占PM2.5质量的15.7%—22.8%、4.2%—6.4%和28.6%—55.8%.PM2.5及其主要化学组分浓度有显著的季节变化,即冬季浓度显著高于其他季节,夏季浓度最低.泸州除夏季外,其他季节SO42-、NO3-同源性较好;其他城市在冬季,SO42-、NO3-同源性较好.NH4+主要存在形式为NH4NO3、(NH42SO4、NH4HSO4.OC、EC来源复杂,主要为机动车源、煤燃烧源和生物质燃烧源.川南地区PM2.5的来源主要受8种因子影响,按总体贡献排序依次为:二次硫酸盐、生物质燃烧、工业源、二次硝酸盐、机动车源、煤燃烧、道路尘埃和建筑尘埃.此外,相比较而言,机动车源贡献在泸州市较凸显,煤燃烧源贡献在宜宾市较凸显.

English Abstract

参考文献 (66)

目录

/

返回文章
返回