熔盐法去除污泥焚烧灰中磷的效果及热动力学分析

王艺鹏, 袁海平, 应迪文, 朱南文. 熔盐法去除污泥焚烧灰中磷的效果及热动力学分析[J]. 环境化学, 2021, (2): 540-548. doi: 10.7524/j.issn.0254-6108.2019092904
引用本文: 王艺鹏, 袁海平, 应迪文, 朱南文. 熔盐法去除污泥焚烧灰中磷的效果及热动力学分析[J]. 环境化学, 2021, (2): 540-548. doi: 10.7524/j.issn.0254-6108.2019092904
WANG Yipeng, YUAN Haiping, YING Diwen, ZHU Nanwen. Molten salt in removal of phosphorus in incinerated sewage sludge ash with thermodynamics models[J]. Environmental Chemistry, 2021, (2): 540-548. doi: 10.7524/j.issn.0254-6108.2019092904
Citation: WANG Yipeng, YUAN Haiping, YING Diwen, ZHU Nanwen. Molten salt in removal of phosphorus in incinerated sewage sludge ash with thermodynamics models[J]. Environmental Chemistry, 2021, (2): 540-548. doi: 10.7524/j.issn.0254-6108.2019092904

熔盐法去除污泥焚烧灰中磷的效果及热动力学分析

    通讯作者: 朱南文, E-mail: nwzhu@sjtu.edu.cn
  • 基金项目:

    国家自然科学基金(21876110)和水体污染控制与治理科技重大专项(2017ZX07403002)资助.

Molten salt in removal of phosphorus in incinerated sewage sludge ash with thermodynamics models

    Corresponding author: ZHU Nanwen, nwzhu@sjtu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21876110) and Major Science and Technology Program for Water Pollution Control and Treatment of China (2017ZX07403002).
  • 摘要: 利用碳还原剂和氯化钙熔盐药剂在1100℃下还原污泥焚烧灰中的磷酸盐为气态磷单质并去除,采用X射线衍射分析(XRD)残渣的组成和热重质谱(TGA-MS)分析反应过程.结果表明,添加氯化钙可显著提高污泥焚烧灰除磷效率,氯化钙的最优添加量为25%质量分数,此时污泥焚烧灰除磷效率为82%.XRD结果显示,污泥焚烧灰经熔盐处理后形成了氯磷灰石(chlorapatite),珍珠云母(margarite)等物质,其中氯磷灰石的形成有利于焚烧灰中磷的还原.对TGA-MS结果进行热解动力学反应拟合,结果显示,污泥焚烧灰除磷反应在添加少量氯化钙添加时为均相反应;污泥焚烧灰除磷反应在添加较多氯化钙时为固相扩散反应.固相反应的发生有利于降低磷酸盐还原反应温度并提高去除效率.
  • 加载中
  • [1] MURAKAMI T, SUZUKI Y, NAGASAWA H, et al. Combustion characteristics of sewage sludge in an incineration plant for energy recovery[J]. Fuel Processing Technology, 2009, 90(6):778-783.
    [2] KELESSIDIS A, STASINAKIS A S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries[J]. Waste Management, 2012, 32(6):1186-1195.
    [3] 鲁刘磊, 欧阳东, 温喜廉. 活化污泥焚烧灰胶凝活性的试验研究[J]. 硅酸盐通报, 2014, 33(6):1556-1561.

    LU L L, OU Y D, WEN X L. Experimental study on cementitous reactivity of activated sludge incieration ash[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(6):1556-1561(in Chinese).

    [4] 钱觉时, 谢从波, 谢小莉,等. 城市生活污水污泥建材利用现状与研究进展[J]. 建筑材料学报, 2014, 17(5):829-836.

    QIAN J S, XIE C B, XIE X L, et al. Utilization of municipal sewage sludge as building materials:A state-of-the-art review[J]. Journal of Building Materials, 2014, 17(5):829-836(in Chinese).

    [5] DONATELLO S, TYRER M, CHEESEMAN C R. EU landfill waste acceptance criteria and EU hazardous waste directive compliance testing of incinerated sewage sludge ash[J]. Waste Management, 2010, 30(1):63-71.
    [6] LIN W Y, NG W C, WONG B S E, et al. Evaluation of sewage sludge incineration ash as a potential land reclamation material[J]. Journal of Hazardous Materials, 2018, 357:63-72.
    [7] LIN Y, ZHOU S, LI F, et al. Utilization of municipal sewage sludge as additives for the production of eco-cement[J]. Journal of Hazardous Materials, 2012, 213/214:457-465.
    [8] BAEZA F, PAY J, GALAO O, et al. Blending of industrial waste from different sources as partial substitution of portland cement in pastes and mortars[J]. Construction and Building Materials, 2014, 66:645-653.
    [9] 张宇宁, 朱京海. 城市污泥处置技术及资源化利用研究综述[J]. 环境保护与循环经济, 2019, 39(4):5-7.

    ZHANG Y N, ZHU J H. Review of sewage sludge desposal technic and recovery[J]. Recycle Economy, 2019, 39(4):5-7(in Chinese).

    [10] NAKAKUBO T, YOSHIDA N, HATTORI Y. Analysis of greenhouse gas emission reductions by collaboratively updating equipment in sewage treatment and municipal solid waste incineration plants[J]. Journal of Cleaner Production, 2017, 168:803-813.
    [11] YUSUF R O, NOOR Z Z, DIN M D F M D, et al. Use of sewage sludge ash (SSA) in the production of cement and concrete-A review[J]. International Journal of Global Environmental Issues, 2012, 12(2/3/4):214-228.
    [12] STANĚK T, SULOVSK P. The influence of phosphorous pentoxide on the phase composition and formation of Portland clinker[J]. Materials Characterization, 2009, 60(7):749-755.
    [13] LIANG S, CHEN H, ZENG X, et al. A comparison between sulfuric acid and oxalic acid leaching with subsequent purification and precipitation for phosphorus recovery from sewage sludge incineration ash[J]. Water Research, 2019, 159:242-251.
    [14] GUEDES P, COUTO N, OTTOSEN L M, et al. Phosphorus recovery from sewage sludge ash through an electrodialytic process[J]. Waste Management, 2014, 34(5):886-892.
    [15] C RDOVA UDAETA M, DODBIBA G, PONOU J, et al. Recovery of phosphorus from sewage sludge ash (SSA) by heat treatment followed by high gradient magnetic separation and flotation[J]. Advanced Powder Technology, 2017, 28(3):755-762.
    [16] ARNOUT S, NAGELS E. Modelling thermal phosphorus recovery from sewage sludge ash[J]. Calphad, 2016, 55:26-31.
    [17] DHIR R K, GHATAORA G S, LYNN C J. 5-concrete-related applications//DHIR R K, GHATAORA G S, LYNN C J. Sustainable construction materials[M]. Sawston, Cambridge,UK, 2017:111-158.
    [18] DONATELLO S, CHEESEMAN C R. Recycling and recovery routes for incinerated sewage sludge ash (ISSA):A review[J]. Waste Management, 2013, 33(11):2328-2340.
    [19] 李艳, 戢峻, 李鹏飞,等. 中低品位磷矿碳热还原工艺优化[J]. 化学与生物工程, 2019, 36(9):11-15.

    LI Y, JI J, LI P F, et al. Optimization in carbothermal reduction process of medium-low grade phosphate ore[J]. Chemistry & Bioengineering, 2019, 36(9):11-15(in Chinese).

    [20] GB/T-11893-1989. 水质总磷的测定钼酸铵分光光度法[S]. 北京:中国标准出版社,1989. GB/T-11893-1989. Water quality-Determination of total phosphorus-Ammonium molydbate spectrophotometric method[S]. Beijing:Standards Press of China, 1989(in Chinese).
    [21] ZHOU Z, DONG P, WANG D, et al. Silicon-titanium nanocomposite synthesized via the direct electrolysis of SiO2/TiO2 precursor in molten salt and their performance as the anode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2019, 781:362-370.
    [22] KATASHO Y, YASUDA K, NOHIRA T. Electrochemical reduction behavior of simplified simulants of vitrified radioactive waste in molten CaCl2[J]. Journal of Nuclear Materials, 2018, 503:290-303.
    [23] PARK H S, KIM I T, CHO Y Z, et al. Stabilization/solidification of radioactive salt waste by using xSiO2-yAl2O3-P2O5 (SAP) Material at Molten Salt State[J]. Environmental Science & Technology, 2008, 42(24):9357-9362.
    [24] LEE K R, RILEY B J, PARK H S, et al. Investigation of physical and chemical properties for upgraded SAP (SiO2Al2O3P2O5) waste form to immobilize radioactive waste salt[J]. Journal of Nuclear Materials, 2019, 515:382-391.
    [25] NASIRI-TABRIZI B, FAHAMI A, EBRAHIMI-KAHRIZSANGI R. Phase transitions and structural changes of nanostructured chlorapatite under thermal treatment[J]. Ceramics International, 2014, 40(1):901-910.
    [26] PENG J, CHEN H, JIN X, et al. Phase-Tunable Fabrication of Consolidated (α+β)-TiZr Alloys for Biomedical Applications through Molten Salt Electrolysis of Solid Oxides[J]. Chemistry of Materials, 2009, 21(21):5187-5195.
    [27] PANG Z, ZOU X, ZHENG K, et al. Sustainable synthesis of Cr7C3, Cr2AlC, and their derived porous carbons in molten salts[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12):16607-16615.
    [28] YIN H, MAO X, TANG D, et al. Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis[J]. Energy & Environmental Science, 2013, 6(5):1538.
    [29] JIAO S, HU L, YANG S, et al. Electrochemical extraction of carbon nanotubes from CO2 in CaCl2 based melts[J]. Journal of Materials Chemistry A, 2017, 5(13):6219-6225.
    [30] DENG B, TANG J, GAO M, et al. Electrolytic synthesis of carbon from the captured CO2 in molten LiCl-KCl-CaCO3:Critical roles of electrode potential and temperature for hollow structure and lithium storage performance[J]. Electrochimica Acta, 2018, 259:975-985.
    [31] 孙国超, 李燕凤, 袁圣娟. 窑法磷酸工业生产评述[J]. 化肥工业, 2019, 46(3):10-15.

    SUN G C, LI Y F, YUAN S J. Review of Industrial Production of Kiln Process Phosphoric Acid[J]. Journal of Chemical Fertilizer Industry, 2019, 46(3):10-15(in Chinese).

  • 加载中
计量
  • 文章访问数:  2370
  • HTML全文浏览数:  2370
  • PDF下载数:  34
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-29

熔盐法去除污泥焚烧灰中磷的效果及热动力学分析

    通讯作者: 朱南文, E-mail: nwzhu@sjtu.edu.cn
  • 1. 上海交通大学环境科学与工程学院, 上海, 200240;
  • 2. 上海污染控制与生态安全研究院, 上海, 200092
基金项目:

国家自然科学基金(21876110)和水体污染控制与治理科技重大专项(2017ZX07403002)资助.

摘要: 利用碳还原剂和氯化钙熔盐药剂在1100℃下还原污泥焚烧灰中的磷酸盐为气态磷单质并去除,采用X射线衍射分析(XRD)残渣的组成和热重质谱(TGA-MS)分析反应过程.结果表明,添加氯化钙可显著提高污泥焚烧灰除磷效率,氯化钙的最优添加量为25%质量分数,此时污泥焚烧灰除磷效率为82%.XRD结果显示,污泥焚烧灰经熔盐处理后形成了氯磷灰石(chlorapatite),珍珠云母(margarite)等物质,其中氯磷灰石的形成有利于焚烧灰中磷的还原.对TGA-MS结果进行热解动力学反应拟合,结果显示,污泥焚烧灰除磷反应在添加少量氯化钙添加时为均相反应;污泥焚烧灰除磷反应在添加较多氯化钙时为固相扩散反应.固相反应的发生有利于降低磷酸盐还原反应温度并提高去除效率.

English Abstract

参考文献 (31)

目录

/

返回文章
返回