在线固相萃取-超高效液相色谱法检测水中14种有机磷酸酯

张恒, 郭昌胜, 吕佳佩, 裴莹莹, 殷行行, 高建峰, 徐建. 在线固相萃取-超高效液相色谱法检测水中14种有机磷酸酯[J]. 环境化学, 2020, (4): 1047-1054. doi: 10.7524/j.issn.0254-6108.2019103005
引用本文: 张恒, 郭昌胜, 吕佳佩, 裴莹莹, 殷行行, 高建峰, 徐建. 在线固相萃取-超高效液相色谱法检测水中14种有机磷酸酯[J]. 环境化学, 2020, (4): 1047-1054. doi: 10.7524/j.issn.0254-6108.2019103005
ZHANG Heng, GUO Changsheng, LYU Jiapei, PEI Yingying, YIN Xingxing, GAO Jianfeng, XU Jian. Determination of 14 organic phosphate esters in water by high performance liquid chromatography coupled with online solid phase extraction[J]. Environmental Chemistry, 2020, (4): 1047-1054. doi: 10.7524/j.issn.0254-6108.2019103005
Citation: ZHANG Heng, GUO Changsheng, LYU Jiapei, PEI Yingying, YIN Xingxing, GAO Jianfeng, XU Jian. Determination of 14 organic phosphate esters in water by high performance liquid chromatography coupled with online solid phase extraction[J]. Environmental Chemistry, 2020, (4): 1047-1054. doi: 10.7524/j.issn.0254-6108.2019103005

在线固相萃取-超高效液相色谱法检测水中14种有机磷酸酯

    通讯作者: 郭昌胜, E-mail: guocs@craes.org.cn
  • 基金项目:

    国家水体污染控制与治理科技重大专项(2017ZX07301005-003,2017ZX07302001)和国家自然科学基金(41673120)资助.

Determination of 14 organic phosphate esters in water by high performance liquid chromatography coupled with online solid phase extraction

    Corresponding author: GUO Changsheng, guocs@craes.org.cn
  • Fund Project: Supported by the National Water Pollution Control and Management Science and Technology Major Project (2017ZX07301005-003, 2017ZX07302001) and the National Natural Science Foundation of China (41673120).
  • 摘要: 与传统固相萃取耗时长、工作量大、有机溶剂使用量多相比,本文建立了一种在线固相萃取-超高效液相色谱串联质谱方法同时测定地表水中14种有机磷酸酯的新方法.地表水样过膜后,直接注入在线固相萃取净化装置,经净化后进入分离柱分离,用乙腈和0.1%的甲酸水溶液梯度洗脱,采用电喷雾离子源正离子多反应监测模式,对14种有机磷酸酯类化合物进行检测,内标法定量.该方法分析时长13.0 min,方法的线性相关系数R2>0.98,地表水和自来水样品的加标回收率在64.8%—113%,相对标准偏差RSD在1.2%—9.3%,检出限为0.1—2.7 ng·L-1.与常规方法相比,该方法提高了分析通量和灵敏度,准确度好,操作简便,适用于地表水和自来水中有机磷酸酯的检测.
  • 加载中
  • [1] MARKLUND A, ANDERSSON B, HAGLUND P. Screening of organophosphorus compounds and their distribution in various indoor environments[J]. Chemosphere, 2003, 53(9):1137-1146.
    [2] LUO Y, GUO W, NGO H H et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment[J]. Science of the Total Environment, 2014, 473-474:619-641.
    [3] QUINTANA J B, REEMTSMA T. Potential of membrane-assisted solvent extraction for the determination of phosphoric acid triesters in wastewater samples by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2006, 1124(1-2):22-28.
    [4] BESTER K. Comparison of TCPP concentrations in sludge and wastewater in a typical German sewage treatment plant-Comparison of sewage sludge from 20 plants[J]. Journal of Environmental Monitoring, 2005, 7(5):509-513.
    [5] HARTMANN P C, BVRGI D, GIGER W. Organophosphate flame retardants and plasticizers in indoor air[J]. Chemosphere, 2004, 57(8):781-787.
    [6] MARKLUND A, ANDERSSON B, HAGLUND P. Organophosphorus flame retardants and plasticizers in air from various indoor environments[J]. Journal of Environmental Monitoring, 2005, 7(8):814-819.
    [7] KIM J W, ISOBE T, SUDARYANTO A et al. Organophosphorus flame retardants in house dust from the philippines:Occurrence and assessment of human exposure[J]. Environmental Science and Pollution Research, 2013, 20(2):812-822.
    [8] ZHENG X, XU F, CHEN K et al. Flame retardants and organochlorines in indoor dust from several e-waste recycling sites in South China:Composition variations and implications for human exposure[J]. Environment International, 2015, 78:1-7.
    [9] DAVID M D, SEIBER J N. Analysis of organophosphate hydraulic fluids in U.S. Air Force base soils[J]. Archives of Environmental Contamination and Toxicology, 1999, 36(3):235-241.
    [10] HOU R, XU Y, WANG Z. Review of OPFRs in animals and humans:Absorption, bioaccumulation, metabolism, and internal exposure research[J]. Chemosphere, Elsevier Ltd, 2016, 153:78-90.
    [11] HUGHES M F, EDWARDS B C, MITCHELL C T et al. In vitro dermal absorption of flame retardant chemicals[J]. Food and Chemical Toxicology, 2001, 39(12):1263-1270.
    [12] MEEKER J D, STAPLETON H M. House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters[J]. Environmental Health Perspectives, 2010, 118(3):318-323.
    [13] SCHINDLER B K, FÖRSTER K, ANGERER J. Determination of human urinary organophosphate flame retardant metabolites by solid-phase extraction and gas chromatography-tandem mass spectrometry[J]. Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences, 2009, 877(4):375-381.
    [14] SCHINDLER B K, FÖRSTER K, ANGERER J. Quantification of two urinary metabolites of organophosphorus flame retardants by solid-phase extraction and gas chromatography-tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2009, 395(4):1167-1171.
    [15] DIXON E R, BLACKWELL M S A, DHANOA M S et al. Measurement at the field scale of soil δ13C and δ15N under improved grassland[J]. Rapid Communications in Mass Spectrometry, 2010,24(5):511-518.
    [16] WANG X W, LIU J F, YIN Y G. Development of an ultra-high-performance liquid chromatography-tandem mass spectrometry method for high throughput determination of organophosphorus flame retardants in environmental water[J]. Journal of Chromatography A, 2011, 1218(38):6705-6711.
    [17] RODIL R, QUINTANA J B, LÓPEZ-MAHÍA P et al. Multi-residue analytical method for the determination of emerging pollutants in water by solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2009, 1216(14):2958-2969.
    [18] STACKELBERG P E, FURLONG E T, MEYER M T et al. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant[J]. Science of the Total Environment, 2004, 329(1-3):99-113.
  • 加载中
计量
  • 文章访问数:  1900
  • HTML全文浏览数:  1900
  • PDF下载数:  75
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-30

在线固相萃取-超高效液相色谱法检测水中14种有机磷酸酯

    通讯作者: 郭昌胜, E-mail: guocs@craes.org.cn
  • 1. 中北大学理学院, 太原, 030051;
  • 2. 中国环境科学研究院环境健康风险评估与研究中心, 北京, 100012;
  • 3. 环境基准与风险评估国家重点实验室, 北京, 100012;
  • 4. 国家环境保护化学品生态效应与风险评估重点实验室, 北京, 100012
基金项目:

国家水体污染控制与治理科技重大专项(2017ZX07301005-003,2017ZX07302001)和国家自然科学基金(41673120)资助.

摘要: 与传统固相萃取耗时长、工作量大、有机溶剂使用量多相比,本文建立了一种在线固相萃取-超高效液相色谱串联质谱方法同时测定地表水中14种有机磷酸酯的新方法.地表水样过膜后,直接注入在线固相萃取净化装置,经净化后进入分离柱分离,用乙腈和0.1%的甲酸水溶液梯度洗脱,采用电喷雾离子源正离子多反应监测模式,对14种有机磷酸酯类化合物进行检测,内标法定量.该方法分析时长13.0 min,方法的线性相关系数R2>0.98,地表水和自来水样品的加标回收率在64.8%—113%,相对标准偏差RSD在1.2%—9.3%,检出限为0.1—2.7 ng·L-1.与常规方法相比,该方法提高了分析通量和灵敏度,准确度好,操作简便,适用于地表水和自来水中有机磷酸酯的检测.

English Abstract

参考文献 (18)

目录

/

返回文章
返回