基于流域沉积物氮磷形态的生态风险评价——以沙溪流域为例

叶宏萌, 杨浩, 袁旭音, 曾榕平, 吴孟兰, 王红. 基于流域沉积物氮磷形态的生态风险评价——以沙溪流域为例[J]. 环境化学, 2020, (12): 3471-3479. doi: 10.7524/j.issn.0254-6108.2019111802
引用本文: 叶宏萌, 杨浩, 袁旭音, 曾榕平, 吴孟兰, 王红. 基于流域沉积物氮磷形态的生态风险评价——以沙溪流域为例[J]. 环境化学, 2020, (12): 3471-3479. doi: 10.7524/j.issn.0254-6108.2019111802
YE Hongmeng, YANG Hao, YUAN Xuyin, ZENG Rongping, WU Menglan, WANG Hong. Ecological risk assessment based on nitrogen and phosphorus forms in watershed sediments:A case study of the Shaxi Watershed,Fujian[J]. Environmental Chemistry, 2020, (12): 3471-3479. doi: 10.7524/j.issn.0254-6108.2019111802
Citation: YE Hongmeng, YANG Hao, YUAN Xuyin, ZENG Rongping, WU Menglan, WANG Hong. Ecological risk assessment based on nitrogen and phosphorus forms in watershed sediments:A case study of the Shaxi Watershed,Fujian[J]. Environmental Chemistry, 2020, (12): 3471-3479. doi: 10.7524/j.issn.0254-6108.2019111802

基于流域沉积物氮磷形态的生态风险评价——以沙溪流域为例

    通讯作者: 袁旭音, E-mail: yxy_hjy@hhu.edu.cn 王红, E-mail: hongwang@njnu.edu.cn
  • 基金项目:

    国家自然科学基金(41372354,41673108),中国博士后科学基金(2019M661874),福建省教育厅A类科技项目(JAT170591)和武夷学院引进人才科研启动项目(YJ201908,YJ201912)资助.

Ecological risk assessment based on nitrogen and phosphorus forms in watershed sediments:A case study of the Shaxi Watershed,Fujian

    Corresponding authors: YUAN Xuyin, yxy_hjy@hhu.edu.cn ;  WANG Hong, hongwang@njnu.edu.cn
  • Fund Project: Supported by National Natural Science Foundation of China (41372354, 41673108), General Program of China Postdoctoral Science Foundation(2019M661874), A Project of Fujian Provincial Department of Education (JAT170591) and Research and Start-Up Project of Talent Introduction of Wuyi University (YJ201908, YJ201912).
  • 摘要: 本文通过分析沙溪流域沉积物基本理化性质及氮磷形态的赋存特征,并运用单因子指数法与生物有效系数法评价氮磷元素的生态风险,揭示了沙溪流域沉积物氮磷含量的空间变化与环境意义.研究结果表明,沙溪流域沉积物总有机碳(TOC)、总氮(TN)和总磷(TP)的含量范围分别为1.11%—2.37%、812.51—2038.29 mg·kg-1、249.87—722.60 mg·kg-1,且下游河段较上、中游河段高;沉积物不同形态组分分布规律为有机硫化物结合态氮(SOEF-N) > 铁锰氧化态氮(SAEF-N) > 弱酸浸取态氮(WAEF-N) > 离子交换态氮(IEF-N),不同无机磷形态含量大小顺序主要为金属氧化物结合态磷(NaOH-P)>钙结合态磷(HCl-P)>还原态磷(BD-P)>弱吸附态磷(NH4Cl-P),且下游生物有效态磷(BAP=NH4Cl-P+BD-P+NaOH-P)的浓度高于上、中游河段,磷释放的风险最大.单因子污染指数评价结果表明,氮存在轻度至重度的污染,并以中度污染为主,磷以轻度和中度污染为主;而生物有效指数法的评价结果显示氮以轻度污染为主,磷以清洁和轻度污染为主.考虑到研究区的环境状况特征,基于总量和形态综合评价的氮磷生物有效指数法可以更好地表征沉积物中氮磷的空间变化和生态风险.
  • 加载中
  • [1] LÓPEZ-DOVAL J C, MONTAGNER C C, DE ALBURQUERQUE A F, et al. Nutrients, emerging pollutants and pesticides in a tropical urban reservoir:Spatial distributions and risk assessment[J]. Science of The Total Environment, 2017, 575:1307-1324.
    [2] 杨洋, 刘其根, 胡忠军, 等. 太湖流域沉积物碳氮磷分布与污染评价[J]. 环境科学学报,2014,34(12):3057-3064.

    YANG Y, LIU Q G, HU Z J, et al. Spatial distribution of sediment carbon, nitrogen and phosphorus and pollution evaluation of sediment in Taihu Lake Basin[J]. Acta Scientiae Circumstantiae, 2014, 34(12):3057-3064(in Chinese).

    [3] DIAS-FERREIRA C, PATO R L, VAREJ O J B, et al. Heavy metal and PCB spatial distribution pattern in sediments within an urban catchment-contribution of historical pollution sources[J]. Journal of Soils and Sediments, 2016, 16(11):2594-2605.
    [4] 冯峰, 王辉, 方涛, 等.东湖沉积物中微生物量与碳、氮、磷的相关性[J]. 中国环境科学,2006,26(3):342-345.

    FENG F, WANG H, FANG T, et al. The correlation between microbial biomass and carbon, nitrogen, phosphorus in the sediments of Lake Donghu[J]. China Environmental Science, 2006, 26(3):342-345(in Chinese).

    [5] YANG Y, GAO B, HAO H, et al. Nitrogen and phosphorus in sediments in China:A national-scale assessment and review[J]. Science of The Total Environment, 2017, 576:840-849.
    [6] ALVAREZ-GUERRA M, VIGURI J R, CASADO-MARTÍNEZ M C, et al. Sediment quality assessment and dredged material management in Spain:Part I, application of sediment quality guidelines in the Bay of Santander[J]. Integrated Environmental Assessment & Management, 2007, 3(4):529-538.
    [7] 胡敏杰, 任洪昌, 邹芳芳, 等. 闽江河口淡水、半咸水沼泽土壤碳氮磷分布及计量学特征[J]. 中国环境科学,2016,36(3):917-926.

    HU M J, RE H C, ZHOU F F, et al. Spatiotemporal distribution and stoichiometry characteristics of carbon, nitrogen and phosphorus in surface soils of freshwater and brackish marshes in the Min River estuary[J]. China Environmental Science, 2016, 36(3):917-926(in Chinese).

    [8] 王书锦,刘云根,张超,等. 洱海流域入湖河口湿地沉积物氮、磷、有机质分布及污染风险评价[J]. 湖泊科学, 2017,29(1):69-77.

    WANG S J, LIU Y G, ZHANG C, et al. Distribution and pollution risk assessment of nitrogen, phosphorus and organic matter in inlet rivers of Erhai Basin[J]. Journal of Lake Sciences, 2017,29(1):69-77(in Chinese).

    [9] GU Y G, OUYANG J, NING J J, et al. Distribution and sources of organic carbon, nitrogen and their isotopes in surface sediments from the largest mariculture zone of the eastern Guangdong coast, South China[J]. Marine Pollution Bulletin, 2017, 120:286-291.
    [10] RASANEN J, KAUPPILA T, SALONEN V P. Sediment-Based investigation of naturally or historically eutrophic lakes-Implications for lake management[J]. Journal of Environmental Management, 2006, 79(3):253-265.
    [11] OGRINC N, FONTOLAN G, FAGANELI J, et al. Carbon and nitrogen isotope compositions of organic matter in coastal marine sediments(the Gulf of Trieste, N Adriatic Sea):Indicators of sources and preservation[J]. Marine Chemistry, 2005, 95(3/4):163-181.
    [12] 吴胜利, 夏品华, 林陶, 等. 贵州草海不同水位梯度下沉积物氮赋存形态及分布特征[J]. 湖泊科学,2019,31(2):407-415.

    WU S L, XIA P H, LIN T, et al. Contents and distribution characteristics of nitrogen forms in sediments of Guizhou Lake Caohai under different water level levels[J]. Journal of Lake Sciences, 2019, 31(2):407-415(in Chinese).

    [13] 周思, 刘永霞, 郭建阳, 等. 构皮滩电站沉积物分布与磷赋存形态的研究[J]. 环保科技,2017,23(4):41-47.

    ZHOU S, LIU Y X, GUO J Y, et al. Spatial distribution of sediments and phosphorus forms of sediments Goupitan Reservoir[J]. Environmental Protection and Technology, 2017, 23(4):41-47(in Chinese).

    [14] YE H M, YUAN X Y, ZHOU R, et al. Distribution and environmental significance of phosphorus forms in riparian soils and river sediments of Jianxi Basin, Fujian province[J]. Polish Journal of Environmental Studies, 2017, 26(5):2331-2341.
    [15] 马红波, 宋金明, 吕晓霞,等. 渤海沉积物中氮的形态及其在循环中的作用[J]. 地球化学,2003,32(1):48-54.

    MA H B, SONG J M, LV X X, et al. Nitrogen forms and their functions in recycling of the Bohai Sea sediments[J]. Geochimica, 2003, 32(1):48-54(in Chinese).

    [16] HUPFER M, GÄCHTER R, GIOVANOLI R. Transformation of phosphorus species in settling seston and during early sediment diagenesis[J]. Aquatic Sciences Research across Boundaries, 1995, 57(4):305-324.
    [17] YE H M, YANG H, HAN N, et al. Risk assessment based on nitrogen and phosphorus forms in watershed sediments:A case study of the upper reaches of the Minjiang watershed[J]. Sustainability, 2019, 11(20):5565-5585.
    [18] 叶宏萌,袁旭音, 李国平, 等. 闽北建溪流域表层沉积物营养元素分布特征及生态风险评价[J]. 环境化学,2018,37(11):2481-2488.

    YE H M, YUAN X Y, LI G P, et al. Distribution and ecological risk assessment of nutrient elements in surface sediments of Jianxi Watershed in northern Fujian[J]. Environmental Chemistry, 2018, 37(11):2481-2488(in Chinese).

    [19] 金晶, 袁旭音, 陈诗文, 等. 太湖流域上游东苕溪干流沉积物和悬浮物的氮形态分布及影响因素[J]. 湖泊科学,2017,29(3):594-603.

    JIN J, YUAN X Y, CHEN S W, et al. Distribution of nitrogen forms in suspended sediments and surface sediments of East Tiaoxi River,upper reaches of Taihu Basin and their influence factors[J]. Journal of Lake Sciences, 2017, 29(3):594-603(in Chinese).

    [20] WANG P F, ZHAO L, WANG C, et al. Nitrogen distribution and potential mobility in sediments of Three Typical Shallow Urban Lakes in China[J]. Environmental Engineering Science, 2009, 26(10):1511-1521.
    [21] WANG S R, JIN X C, JIAO L X, et al. Nitrogen fractions and release in the sediments from the shallow lakes in the middle and lower reaches of the Yangtze River Area, China[J]. Water Air and Soil Pollution, 2008, 187(1/4):5-14.
    [22] 燕文明, 刘凌, 周利, 等. 里下河地区代表性浅水湖泊表层沉积物可转化态氮的赋存特征[J]. 水资源保护,2015,31(5):30-34.

    YAN W M, LIU L, ZHOU L, et al. Occurrence characteristic of transferable nitrogen forms in sediments on surface of representative shallow lakes of Lixiahe Region[J]. Water Resources Protection, 2015,31(5):30-34(in Chinese).

    [23] KAISERLI A, VOUTSA D, SAMARA C. Phosphorus fractionation in Lake Sediments-Lakes Volvi and Koronia N Greece[J]. Chemosphere, 2002, 46(8):1147-1155.
    [24] RYDIN E. Potentially mobile phosphorus in Lake Erken sediment[J]. Water Research, 2000, 34(7):2037-2042.
    [25] 于辉辉, 袁旭音, 韩磊, 等. 太湖西部流域滨岸带土壤磷形态空间分布与影响因素比较[J]. 环境科学研究,2018,31(3):537-546.

    YU H H, YUAN X Y, HAN L, et al. Spatial distributions of phosphorus fractions in riparian soils and their influence factors analysis in Watersheds of Western Taihu Basin[J]. Research of Environmental Sciences, 2018, 31(3):537-546(in Chinese).

    [26] ERIKSSON A K, GUSTAFSSON J P, HESTERBERG D. Phosphorus speciation of clay fractions from long-term fertility experiments in Sweden[J]. Geoderma, 2015, 241/242:68-74.
    [27] HOU D, HE J, CHANGWEI LV, et al. Spatial variations and distributions of phosphorus and nitrogen in bottom sediments from a typical North-Temperate Lake, China[J]. Environmental Earth Sciences, 2013, 71(7):3063-3079.
    [28] YE H M, YUAN X Y, HAN L, et al. Comparison of phosphorus fraction distribution and influencing factors of suspended and surface sediments in the Tiaoxi watershed, China[J]. Water Science and Technology, 2017, 75(9):2108-2118.
  • 加载中
计量
  • 文章访问数:  2179
  • HTML全文浏览数:  2179
  • PDF下载数:  40
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-11-18
叶宏萌, 杨浩, 袁旭音, 曾榕平, 吴孟兰, 王红. 基于流域沉积物氮磷形态的生态风险评价——以沙溪流域为例[J]. 环境化学, 2020, (12): 3471-3479. doi: 10.7524/j.issn.0254-6108.2019111802
引用本文: 叶宏萌, 杨浩, 袁旭音, 曾榕平, 吴孟兰, 王红. 基于流域沉积物氮磷形态的生态风险评价——以沙溪流域为例[J]. 环境化学, 2020, (12): 3471-3479. doi: 10.7524/j.issn.0254-6108.2019111802
YE Hongmeng, YANG Hao, YUAN Xuyin, ZENG Rongping, WU Menglan, WANG Hong. Ecological risk assessment based on nitrogen and phosphorus forms in watershed sediments:A case study of the Shaxi Watershed,Fujian[J]. Environmental Chemistry, 2020, (12): 3471-3479. doi: 10.7524/j.issn.0254-6108.2019111802
Citation: YE Hongmeng, YANG Hao, YUAN Xuyin, ZENG Rongping, WU Menglan, WANG Hong. Ecological risk assessment based on nitrogen and phosphorus forms in watershed sediments:A case study of the Shaxi Watershed,Fujian[J]. Environmental Chemistry, 2020, (12): 3471-3479. doi: 10.7524/j.issn.0254-6108.2019111802

基于流域沉积物氮磷形态的生态风险评价——以沙溪流域为例

    通讯作者: 袁旭音, E-mail: yxy_hjy@hhu.edu.cn ;  王红, E-mail: hongwang@njnu.edu.cn
  • 1. 南京师范大学地理科学学院, 南京, 210023;
  • 2. 福建省生态产业绿色技术重点实验室, 武夷学院生态与资源工程学院, 武夷山, 354300;
  • 3. 河海大学环境学院, 南京, 210098;
  • 4. 南京师范大学环境学院, 南京, 210023
基金项目:

国家自然科学基金(41372354,41673108),中国博士后科学基金(2019M661874),福建省教育厅A类科技项目(JAT170591)和武夷学院引进人才科研启动项目(YJ201908,YJ201912)资助.

摘要: 本文通过分析沙溪流域沉积物基本理化性质及氮磷形态的赋存特征,并运用单因子指数法与生物有效系数法评价氮磷元素的生态风险,揭示了沙溪流域沉积物氮磷含量的空间变化与环境意义.研究结果表明,沙溪流域沉积物总有机碳(TOC)、总氮(TN)和总磷(TP)的含量范围分别为1.11%—2.37%、812.51—2038.29 mg·kg-1、249.87—722.60 mg·kg-1,且下游河段较上、中游河段高;沉积物不同形态组分分布规律为有机硫化物结合态氮(SOEF-N) > 铁锰氧化态氮(SAEF-N) > 弱酸浸取态氮(WAEF-N) > 离子交换态氮(IEF-N),不同无机磷形态含量大小顺序主要为金属氧化物结合态磷(NaOH-P)>钙结合态磷(HCl-P)>还原态磷(BD-P)>弱吸附态磷(NH4Cl-P),且下游生物有效态磷(BAP=NH4Cl-P+BD-P+NaOH-P)的浓度高于上、中游河段,磷释放的风险最大.单因子污染指数评价结果表明,氮存在轻度至重度的污染,并以中度污染为主,磷以轻度和中度污染为主;而生物有效指数法的评价结果显示氮以轻度污染为主,磷以清洁和轻度污染为主.考虑到研究区的环境状况特征,基于总量和形态综合评价的氮磷生物有效指数法可以更好地表征沉积物中氮磷的空间变化和生态风险.

English Abstract

参考文献 (28)

返回顶部

目录

/

返回文章
返回