邯郸大气VOCs污染特征及其在O3生成中的作用

刘营营, 王丽涛, 齐孟姚, 王雨, 鲁晓晗, 谭静瑶, 刘振通, 汪庆, 许瑞广, 张海霞. 邯郸大气VOCs污染特征及其在O3生成中的作用[J]. 环境化学, 2020, (11): 3101-3110. doi: 10.7524/j.issn.0254-6108.2019112301
引用本文: 刘营营, 王丽涛, 齐孟姚, 王雨, 鲁晓晗, 谭静瑶, 刘振通, 汪庆, 许瑞广, 张海霞. 邯郸大气VOCs污染特征及其在O3生成中的作用[J]. 环境化学, 2020, (11): 3101-3110. doi: 10.7524/j.issn.0254-6108.2019112301
LIU Yingying, WANG Litao, QI Mengyao, WANG Yu, LU Xiaohan, TAN Jingyao, LIU Zhentong, WANG Qing, XU Ruiguang, ZHANG Haixia. Characteristics of atmospheric VOCS and their role in O3 generation in Handan[J]. Environmental Chemistry, 2020, (11): 3101-3110. doi: 10.7524/j.issn.0254-6108.2019112301
Citation: LIU Yingying, WANG Litao, QI Mengyao, WANG Yu, LU Xiaohan, TAN Jingyao, LIU Zhentong, WANG Qing, XU Ruiguang, ZHANG Haixia. Characteristics of atmospheric VOCS and their role in O3 generation in Handan[J]. Environmental Chemistry, 2020, (11): 3101-3110. doi: 10.7524/j.issn.0254-6108.2019112301

邯郸大气VOCs污染特征及其在O3生成中的作用

    通讯作者: 王丽涛, E-mail: wanglitao@hebeu.edu.cn
  • 基金项目:

    国家自然科学基金(41475131,41703088),大气重污染成因与治理攻关项目(DQGG-05-09,DQGG-01-07,DQGG-02-09,DQGG-03-04),河北省杰出青年科学基金(D2017402086),河北省重点研发计划项目(17273712D,19273707D),河北省青年拔尖人才支持计划,河北省高校百名优秀创新人才支持计划(SLRC2017025)和河北省人才工程培养经费(A2016002022)联合资助.

Characteristics of atmospheric VOCS and their role in O3 generation in Handan

    Corresponding author: WANG Litao, wanglitao@hebeu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (41475131, 41703088), National Key Program of Cause and Control of Severe Air Pollution (DQGG-05-09, DQGG-01-07, DQGG-02-09, DQGG-03-04), Hebei Science Fund of Distinguished Young Scholars (D2017402086), Key Projects of Research and Development of Hebei Province (17273712D, 19273707D), the Program for the Outstanding Young Scholars of Hebei Province, the Hebei Support Program of Hundred Outstanding Innovative Talents from Universities (SLRC2017025) and Hebei Cultivating Project of Talent Development (A2016002022).
  • 摘要: 本研究分别于2017年10月1-31日、2018年1月1-31日、4月1-30日和7月1-31日对邯郸市主要大气污染物VOCs、O3和NOx进行在线监测,并在此基础上进行了VOCs组成、臭氧(O3)和氮氧化物(NOx)的污染特征研究,利用最大增量反应活性(MIR)和羟基反应速率(LOH)法综合分析各类VOCs的臭氧生成潜势(OFP),并利用主成分分析(PCA)模型对邯郸市大气VOCs进行定性和定量的源解析.结果表明,监测期间邯郸市VOCs平均浓度为128.7 μg·m-3,与国内其他发达城市相比略低.VOCs浓度冬季最高,平均浓度为151.6 μg·m-3.各种成分中烷烃占比最高(49.5%),其次是烯烃(26.1%),最低的是芳香烃(24.4%).其中浓度高的烷烃物种主要包括乙烷、丙烷、异戊烷、苯和甲苯.每日之内O3浓度呈单峰结构,在10:00-16:00期间达到高值,NOx与之趋势相反.利用MIR法计算得烯烃和芳香烃对O3生成贡献较高,分别为43.7%和34.4%;而烷烃对O3生成的贡献率相对最低,为21.9%.MIR法与LOH法计算结果相近,对O3生成的贡献率相对较高的物种主要有乙烯、2-甲基戊烷、异戊二烯、1,3,5-三甲基苯、1,2,4-三甲基苯和1,2,3-三甲基苯.溶剂使用、燃料蒸发和汽车尾气排放以及工业污染源是邯郸市VOCs的主要来源.
  • 加载中
  • [1] KOUNTOURIOTIS A, ALEIFERIS P G, CHARALAMBIDES A G. Numerical investigation of VOC levels in the area of petrol stations[J]. Science of the Total Environment, 2014, 470/471:1205-1224.
    [2] 罗玮,王伯光,刘舒乐,等.广州大气挥发性有机物的臭氧生成潜势及来源研究[J]. 环境科学与技术,2011,34(5):80-86.

    LUO W, WANG B G, LIU S L, et al. Ozone formation potential and source of volatile organic compounds in Guangzhou[J]. Environmental Science and Technology, 2011, 34(5):80-86(in Chinese).

    [3] 李斌,张鑫,李娜,等.北京市春夏挥发性有机物的污染特征及源解析[J]. 环境化学,2018,37(11):2410-2418.

    LI B, ZHANG X, LI N, et al. Pollution characteristics and source analysis of volatile organic compounds in spring and summer of Beijing[J]. Environmental Chemistry, 2018, 37(11):2410-2418(in Chinese).

    [4] 韩婷婷,李颖若,邱雨露,等.上甸子区域背景站VOCs污染特征及其对臭氧生成贡献[J]. 环境科学,2020,41(6):2586-2595.

    HAN T T, LI Y R, QIU Y L, et al. VOCs pollution characteristics and its contribution to ozone generation in shangdianzi area background station[J]. Environmental Science, 2020,41(6):2586-2595(in Chinese).

    [5] 王楚涵,张鑫,吴鸣,等.沈阳市郊区环境空气中醛酮类化合物的污染特征与来源分析[J]. 环境科学研究,2020,3(12),doi:10.13198

    /j.issn.1001-6929.2020.03.39 WANG C H, ZHANG X, WU M, et al. Pollution characteristics and source analysis of aldehydes and ketones in ambient air of Shenyang suburb[J]. Environmental Science Research, 2020, 33(12):doi:10.13198/j.issn.1001-6929.2020.03.39(in Chinese).

    [6] ZHU Y, YANG L, CHEN J, et al. Characteristics of ambient volatile organic compounds and the influence of biomass burning at a rural site in Northern China during summer 2013[J]. Atmospheric Environment, 2016, 124:156-165.
    [7] LI M, ZHANG L. Haze in China:Current and future challenges[J]. Environmental Pollution, 2014, 189:85-86.
    [8] 张翼翔,尹沙沙,袁明浩,等.郑州市春季大气挥发性有机物污染特征及源解析[J]. 环境科学,2019,40(10):4372-4381.

    ZHANG Y X, YIN S S, YUAN M H, et al. Pollution characteristics and source analysis of volatile organic compounds in Zhengzhou spring[J]. Environmental Science,2019,40(10):4372-4381(in Chinese).

    [9] MELIKE D, ODABASI M, SERPIL Y. Source apportionment of biogenic and anthropogenic VOCs in Bolu plateau[J]. Science of the Total Environment, 2020, 731:139201.
    [10] SAKAMOTO Y, SHOJI K, BUI M T, et al. Air quality study in Hanoi, Vietnam in 2015-2016 based on a one-year observation of NOx, O3, CO and a one-week observation of VOCs[J]. Atmospheric Pollution Research, 2018, 9(3):544-551.
    [11] PARALOVO S L, BARBOSA C G G, CARNEIRO I P S, et al. Observations of particulate matter, NO2, SO2, O3, H2S and selected VOCs at a semi-urban environment in the amazon region[J]. Science of the Total Environment, 2019, 650:996-1006.
    [12] 王雪松,李金龙.人为源排放VOC对北京地区臭氧生成的贡献[J]. 中国环境科学,2002,22(6):501-505.

    WANG X S, LI J L. Contribution of man-made emission VOC to ozone generation in Beijing area[J]. China Environmental Scienc,2002,22(6):501-505(in Chinese).

    [13] 胡春芳,田媛,李科.北京市春季不同雾霾天挥发性有机物特征研究[J]. 广东化工,2017,44(21):127-128.

    HU C F, TIAN Y, LI K. Characteristics of volatile organic compounds in different haze days in Beijing in spring[J]. Guangdong Chemical Industry, 2017, 44(21):127-128(in Chinese).

    [14] 刘奇琛,黄婧,郭新彪.北京市大气挥发性有机物(VOCs)的污染特征及来源[J]. 生态毒理学报,2017,12(3):49-61.

    LIU Q C, HUANG J, GUO X B. Pollution characteristics and sources of volatile organic compounds (VOCs) in Beijing air[J]. Asian Journal Ecotoxicology, 2017, 12(3):49-61(in Chinese).

    [15] 吕子峰,郝吉明,段菁春,等.北京市夏季二次有机气溶胶生成潜势的估算[J]. 环境科学,2009,30(4):969-975.

    LU Z F, HAO J M, J DUAN J C, et al. Estimation of secondary organic aerosol formation potential in summer in Beijing[J]. Environmental Science, 2009, 30(4):969-975(in Chinese).

    [16] 刘彬,李丹,刘振宇,等.天津市夏季挥发性有机物(VOCs)特征分析[J]. 环境与可持续发展,2018,43(2):137-139.

    LIU B, LI D, LIU Z Y, et al. Characteristics of volatile organic compounds (VOCs) in summer in Tianjin[J]. Environment and Sustainable Development, 2018, 43(2):137-139(in Chinese).

    [17] 罗达通,高健,王淑兰,等.上海秋季大气挥发性有机物特征及污染物来源分析[J]. 中国环境科学. 2015,35(4):987-994.

    LUO D T, GAO J, WANG S L, et al. Analysis on the characteristics of volatile organic compounds and the sources of pollutants in autumn air in Shanghai[J]. China Environmental Science, 2015, 35(4):987-994(in Chinese).

    [18] 崔虎雄.上海市春季臭氧和二次有机气溶胶生成潜势的估算[J]. 环境科学,2013,34(12):4529-4534.

    CUI H X. Estimation of spring ozone and secondary organic aerosol formation potential in Shanghai[J]. Environmental Science,2013, 34(12):4529-4534(in Chinese).

    [19] 张露露.上海市青浦区大气挥发性有机物的特征及来源分析[D]. 武汉:武汉理工大学, 2016. ZHANG L L. Characteristics and source analysis of atmospheric volatile organic compounds in qingpu district, Shanghai[D]. Wuhan:Wuhan University of Technology, 2016(in Chinese).
    [20] 何丽,罗萌萌,潘巍,等.成都秋季大气污染过程VOCs特征及SOA生成潜势[J]. 中国环境科学,2018,38(8):2840-2845.

    HE L, LUO M M, PAN W, et al. VOCs characteristics and potential of SOA generation in autumn air pollution process in Chengdu[J]. China Environmental Science, 2018, 38(8):2840-2845(in Chinese).

    [21] 陈颖,李德文,史奕,等.沈阳地区典型绿化树种生物源挥发性有机物的排放速率[J]. 东北林业大学学报,2009,37(3):47-49.

    CHEN Y, LI D W, SHI Y, et al. Emission rate of biogenic volatile organic compounds from typical tree species in Shenyang area[J]. Journal of Northeast Forestry University, 2009, 37(3):47-49(in Chinese).

    [22] 李晶,曲健,王成辉,等.沈阳市典型区域环境空气中挥发性有机物污染状况分析[J]. 环境保护与循环经济,2018,38(7):58-60.

    LI J, QU J, WANG C H, et al. Analysis of volatile organic matter pollution in typical regional environment of Shenyang[J]. Environmental Protection and Circular Economy, 2018, 38(7):58-60(in Chinese).

    [23] WEI W, LI Y, WANG Y, et al. Characteristics of VOCs during haze and non-haze days in Beijing, China:Concentration, chemical degradation and regional transport impact[J]. Atmospheric Environment, 2018, 194:134-145.
    [24] LIU B, LIANG D, YANG J, et al. Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China[J]. Environmental Pollution,2016, 218:757-769.
    [25] 王玲玲,王潇磊,南淑清,等.郑州市环境空气中挥发性有机物的组成及分布特点[J]. 中国环境监测,2008,24(4):66-69.

    WANG L L, WANG X L, NAN S Q, et al. Composition and distribution of volatile organic compounds in ambient air of Zhengzhou[J]. Environmental Monitoring of China, 2008,24(4):66-69(in Chinese).

    [26] 郭宇宏,朱俏俏,杨春,等.奎屯市大气环境中O3与VOCs、NOx的关系[J]. 干旱区研究,2019,36(3):734-742.

    GUO Y H, ZHU Q Q, YANG C, et al. The relationship between O3, VOCs and NOx in the atmospheric environment of Kuitun[J]. Arid Area Study, 2019, 36(3):734-742(in Chinese).

    [27] 鲁晓晗,王丽涛,马笑,等.邯郸市VOCs变化特征及O3和SOA生成潜势[J]. 环境科学与技术,2019,42(3):30-37.

    LU X H, WANG L T, MA X, et al. Change characteristics of VOCs in Handan and potential generation of O3 and SOA[J]. Environmental Science and Technology, 2019, 42(3):30-37(in Chinese).

    [28] WEI Z, WANG L T, CHEN M Z, et al. The 2013 severe haze over the Southern Hebei, China:PM2.5 composition and source apportionment[J]. Atmospheric Pollution Research, 2014, 5(4):759-768.
    [29] MENG C C, WANG L T, ZHANG F F, et al. Characteristics of concentrations and water-soluble inorganic ions in PM2.5 in Handan City,Hebei Province, China[J]. Atmospheric Research, 2016, 171:133-146.
    [30] MA S M, WANG L T, WEI Z, et al. Characterization of PM2.5 and it's chemical compositions under different air quality grades in Handan, China[J]. Fresenius Environmental Bulletin, 2016, 25(12):5162-5171.
    [31] ZHANG C Y, WANG L T, QI M Y, et al. Evolution of key chemical components in PM2.5 and potential formation mechanisms of serious haze events in Handan, China[J]. Aerosol and Air Quality Research, 2018, 18(7):1545-1557.
    [32] ZHAO L, WANG L T, TAN J H, et al. Changes of chemical composition and source apportionment of PM2.5 during 2013-2017 in urban Handan, China[J]. Atmospheric Environment, 2019, 206:119-131.
    [33] 苏雷燕,赵明,李岩,等.环境空气中挥发性有机物(VOCs)光化学行为的研究进展[J]. 绿色科技,2013,11(1):178-182.

    SU L Y, ZHAO M, LI Y, et al. Advances in the study of the photochemical behavior of volatile organic compounds (VOCs) in ambient air[J]. Journal of Green Science and Technology, 2013, 11(1):178-182(in Chinese).

    [34] CARTER W P L. Development of ozone reactivity scales for volatile organic compounds[J]. Air & Waste Management Association, 1994, 44(7):881-899.
    [35] ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 2003, 103(12):4605-4638.
    [36] WU W, ZHAO B, WANG S, et al. Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China[J]. Journal of Environmental Sciences, 2017, 53(3):224-237.
    [37] 高蒙,安俊琳,杭一纤,等.PMF和PCA/APCS模型对南京北郊大气VOCs源解析对比研究[J]. 气象与环境学报,2014,30(1):43-50.

    GAO M, AN J L, HANG Y X, et al. Analysis and comparison of VOCs sources in northern suburbs of Nanjing by PMF and PCA/APCS[J]. Journal of Meteorology and Environment, 2014, 30(1):43-50(in Chinese).

    [38] 朱少峰,黄晓锋,何凌燕,等.深圳大气VOCs浓度的变化特征与化学反应活性[J]. 中国环境科学,2012,32(12):2140-2148.

    ZHU S F, HUANG X F, HE L Y, et al. Variation characteristics and chemical reactivity of atmospheric VOCs concentration in Shenzhen[J]. China Environmental Science, 2012, 32(12):2140-2148(in Chinese).

    [39] WANG B, SHAO M, LU S H, et al. Variation of ambient non-methane hydrocarbons in Beijing in summer 2008[J]. Atmospheric Chemistry and Physics. 2010, 10(13):5911-5923.
    [40] 谢馨.南京市典型石化企业VOCs的排放特征及臭氧生成潜势的分析[C]//合肥:2018中国环境科学学会科学技术年会. XIE X. Analysis on VOCs emission characteristics and ozone generation potential of typical petrochemical enterprises in Nanjing[C]//Hefei:2018 Annual Scientific and Technological Meeting of Chinese Society of Environmental Sciences (in Chinese).
    [41] 张涛,张振华.日照市环境空气中氮氧化物及气象因子对臭氧污染的影响[J]. 节能与环保,2019,4(2):80-81.

    ZHANG T, ZHANG Z H. Effects of nitrogen oxides in ambient air and meteorological factors on ozone pollution in Rizhao[J]. Energy conservation and Environmental Protection, 2019(2):80-81(in Chinese).

    [42] 陈长虹,苏雷燕,王红丽,等.上海市城区VOCs的年变化特征及其关键活性组分[J]. 环境科学学报,2012,32(2):367-376.

    CHEN C H, SU L Y, WANG H L, et al. Variation and key reactive species of ambient VOCs in the urban area of Shanghai, China[J]. Acta Scientiae Circumstantiae, 2012, 32(2):367-376(in Chinese).

    [43] SONG Y, DAI W, SHAO M, et al. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China[J]. Environmental Pollution, 2008, 156(1):174-183.
  • 加载中
计量
  • 文章访问数:  1692
  • HTML全文浏览数:  1692
  • PDF下载数:  58
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-11-23

邯郸大气VOCs污染特征及其在O3生成中的作用

    通讯作者: 王丽涛, E-mail: wanglitao@hebeu.edu.cn
  • 1. 河北工程大学能源与环境工程学院, 邯郸, 056038;
  • 2. 河北省大气污染成因与影响重点实验室(筹), 邯郸, 056038;
  • 3. 中国科学院地球环境研究所, 西安, 710061
基金项目:

国家自然科学基金(41475131,41703088),大气重污染成因与治理攻关项目(DQGG-05-09,DQGG-01-07,DQGG-02-09,DQGG-03-04),河北省杰出青年科学基金(D2017402086),河北省重点研发计划项目(17273712D,19273707D),河北省青年拔尖人才支持计划,河北省高校百名优秀创新人才支持计划(SLRC2017025)和河北省人才工程培养经费(A2016002022)联合资助.

摘要: 本研究分别于2017年10月1-31日、2018年1月1-31日、4月1-30日和7月1-31日对邯郸市主要大气污染物VOCs、O3和NOx进行在线监测,并在此基础上进行了VOCs组成、臭氧(O3)和氮氧化物(NOx)的污染特征研究,利用最大增量反应活性(MIR)和羟基反应速率(LOH)法综合分析各类VOCs的臭氧生成潜势(OFP),并利用主成分分析(PCA)模型对邯郸市大气VOCs进行定性和定量的源解析.结果表明,监测期间邯郸市VOCs平均浓度为128.7 μg·m-3,与国内其他发达城市相比略低.VOCs浓度冬季最高,平均浓度为151.6 μg·m-3.各种成分中烷烃占比最高(49.5%),其次是烯烃(26.1%),最低的是芳香烃(24.4%).其中浓度高的烷烃物种主要包括乙烷、丙烷、异戊烷、苯和甲苯.每日之内O3浓度呈单峰结构,在10:00-16:00期间达到高值,NOx与之趋势相反.利用MIR法计算得烯烃和芳香烃对O3生成贡献较高,分别为43.7%和34.4%;而烷烃对O3生成的贡献率相对最低,为21.9%.MIR法与LOH法计算结果相近,对O3生成的贡献率相对较高的物种主要有乙烯、2-甲基戊烷、异戊二烯、1,3,5-三甲基苯、1,2,4-三甲基苯和1,2,3-三甲基苯.溶剂使用、燃料蒸发和汽车尾气排放以及工业污染源是邯郸市VOCs的主要来源.

English Abstract

参考文献 (43)

目录

/

返回文章
返回