典型有机磷酸酯在小鼠组织内的特异性分布

陈敏, 廖晓亮, 杨春, 宋德浩, 陈智锋, 刘国光, 祁增华, 蔡宗苇. 典型有机磷酸酯在小鼠组织内的特异性分布[J]. 环境化学, 2020, (10): 2627-2636. doi: 10.7524/j.issn.0254-6108.2019123101
引用本文: 陈敏, 廖晓亮, 杨春, 宋德浩, 陈智锋, 刘国光, 祁增华, 蔡宗苇. 典型有机磷酸酯在小鼠组织内的特异性分布[J]. 环境化学, 2020, (10): 2627-2636. doi: 10.7524/j.issn.0254-6108.2019123101
CHEN Min, LIAO Xiaoliang, YANG Chun, SUN Dehao, CHEN Zhifeng, LIU Guoguang, QI Zenghua, CAI Zongwei. The tissue accumulation and distribution of typical organophosphate flame retardants (OPFRs) in mice[J]. Environmental Chemistry, 2020, (10): 2627-2636. doi: 10.7524/j.issn.0254-6108.2019123101
Citation: CHEN Min, LIAO Xiaoliang, YANG Chun, SUN Dehao, CHEN Zhifeng, LIU Guoguang, QI Zenghua, CAI Zongwei. The tissue accumulation and distribution of typical organophosphate flame retardants (OPFRs) in mice[J]. Environmental Chemistry, 2020, (10): 2627-2636. doi: 10.7524/j.issn.0254-6108.2019123101

典型有机磷酸酯在小鼠组织内的特异性分布

    通讯作者: 祁增华, E-mail: zenghuaqi@gmail.com 蔡宗苇, E-mail: zwcai@hkbu.edu.hk
  • 基金项目:

    国家自然科学基金(21806025,91543202)和广东省自然科学基金(2019A1515011294)资助.

The tissue accumulation and distribution of typical organophosphate flame retardants (OPFRs) in mice

    Corresponding authors: QI Zenghua, zenghuaqi@gmail.com ;  CAI Zongwei, zwcai@hkbu.edu.hk
  • Fund Project: Supported by the National Natural Science Foundation of China (21806025, 91543202) and the Natural Science Foundation of Guangdong Province (2019A1515011294).
  • 摘要: 基于气相色谱质谱(GC-MS/MS)联用建立了生物体内典型有机磷酸酯(OPFRs)的高效提取和仪器分析方法,并探讨了其在小鼠组织中的积累分布特征.本研究通过对样品提取、净化和仪器定性定量等环节的条件优化,建立了高效测定机体中典型OPFRs的超声辅助萃取-无乙二胺-N-丙基硅烷(PSA)柱净化-气相色谱质谱分析方法.结果显示,在最优条件下加标样品中氘代磷酸三丁酯TnBP-d27和氘代磷酸三苯酯TPhP-d15的回收率分别为104.86%和102.12%.暴露实验采用昆明(KM)小鼠单次尾静脉注射OPFRs标记物的方式,分时间段取样,获得实际样品.使用本文建立的方法对实际样品进行定量分析,TnBP-d27和TPhP-d15的线性范围在1—200 μg·L-1之间,r2 > 0.99,检出限为0.02—1.08 μg·L-1,定量限为0.06—3.61 μg·L-1;平均回收率为54.04%—130.29%,相对标准偏差(RSDs)为9.58%—18.21%;TnBP-d27主要在脾脏(36 h)和肾脏(24 h)富集,分别为(8.55±1.00) ng·g-1和(20.34±6.60) ng·g-1;TPhP-d15主要在肾脏(12 h)富集,为(29.86±11.90) ng·g-1.
  • 加载中
  • [1] ALAEE M, ARIAS P, SJODIN A, et al. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release[J]. Environment International, 2004, 29(6):683-689.
    [2] VEEN I V D, BOER J D. Phosphorus flame retardants:Properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10):1119-1153.
    [3] MARKLUND A, ANDERSSON B, HAGLUND P. Organophosphorus flame retardants and plasticizers in Swedish sewage treatment plants[J]. Environmental Science & Technology, 2005, 39(19):7423-7429.
    [4] 李玉芳, 伍小明. 有机磷系阻燃剂及其应用研究进展[J]. 国外塑料,2013, 31(11):36-40.

    LI Y F,WU X M. Application research progress of organophosphorus flame retardant[J]. World Plastics, 2013, 31(11):36-40(in Chinese).

    [5] SUNDKVIST A M, OLOFSSON U, HAGLUND P. Organophosphorus flame retardants and plasticizers in marine and freshwater biota and in human milk[J]. Journal of Environmental Monitoring, 2010, 12(4):943-951.
    [6] WEI G L, LI D Q, ZHOU M N, et al. Organophosphorus flame retardants and plasticizers:Sources, occurrence, toxicity and human exposure[J]. Environmental Pollution, 2015, 196:29-46.
    [7] 严小菊. 典型有机磷酸酯阻燃剂在太湖水体和底泥中存在水平和分布特征[D]. 南京:南京大学, 2013. YAN X J. Occurrence and distribution of typical organophosphorus eater flame retardants in the surface water and sediment in Taibu Lake[D]. Nanjing:Nanjing University,2013(in Chinese).
    [8] 高小中, 许宜平, 王子健. 有机磷酸酯阻燃剂的环境暴露与迁移转化研究进展[J]. 生态毒理学报, 2015,10(2):56-68.

    GAO X Z, XU Y P, WANG Z J. Progress in environment exposure, transport and transform of organophosphorus flame retardants[J]. Asian Journal of Ecotoxicology, 2015,10(2):56-68(in Chinese).

    [9] PANG L, YUAN Y, HE H, et al. Occurrence, distribution, and potential affecting factors of organophosphate flame retardants in sewage sludge of wastewater treatment plants in Henan Province, Central China[J]. Chemosphere, 2016, 152:245-251.
    [10] 刘琴,印红玲,李蝶,等.室内灰尘中有机磷酸酯的分布及其健康风险[J]. 中国环境科学, 2017,37(8):2831-2839.

    LIU Q, YIN H L, LI D, et al. Distribution characteristic of OPEs in indoor dust and its health risk[J]. China Environmental Science, 2017,37(8):2831-2839(in Chinese).

    [11] DENG W J, LI N, WU R, et al. Phosphorus flame retardants and Bisphenol A in indoor dust and PM2.5 in kindergartens and primary schools in Hong Kong[J]. Environmental Pollution, 2018, 235:365-371.
    [12] DOSON R E, RODGERS K M, CAREY G, et al. Flame retardant chemicals in college dormitories:Flammability standards influence dust concentrations[J]. Environmental Science & Technology, 2017, 51(9):4860-4869.
    [13] LIU D, LIN T, SHEN K, et al. Occurrence and concentrations of halogenated flame retardants in the atmospheric fine particles in Chinese Cities[J]. Environmental Science & Technology, 2016, 50(18):9846-9854.
    [14] SALAMOVA A, MA Y, VENIER M, et al. High levels of organophosphate flame retardants in the great lakes atmosphere[J]. Environmental Science & Technology Letters, 2014, 1(1):8-14.
    [15] ZHAO H Q, LIU L, LI Y, et al. Occurrence, bioaccumulation, and trophic transfer of oligomeric organophosphorus flame retardants in aquatic environment[J]. Environmental Science & Technology Letters, 2019,6(6):323-328.
    [16] 单岳, 王诗雨, 谷雷严, 等.有机磷酸酯暴露水平与毒性效应的研究进展[J]. 环境科学与管理, 2019, 44(6):15-18.

    SHAN Y, WANG S Y, GU L Y, et al. Research progress on exposure levels and toxic effects of organophosphates[J]. Environmental Science and Management, 2019, 44(6):15-18(in Chinese).

    [17] WANG G, SHI H, DU Z, et al. Bioaccumulation mechanism of organophosphate esters in adult zebrafish (Danio rerio)[J]. Environmental Pollution, 2017, 229:177-187.
    [18] 汪国威. 有机磷酸酯阻燃剂在鱼体内的富集、分布和代谢及其机制[D]. 南京:南京大学, 2017. WANG G W. Accumulation, distribution and transformation of organophosphate flame retardants in fish and their underlying mechanism[D]. Nanjing:Nanjing University, 2017(in Chinese).
    [19] GIULIVO M, CAPRI E, KALOGIANNI E, et al. Occurrence of halogenated and organophosphate flame retardants in sediment and fish samples from three European river basins[J]. Science of The Total Environment, 2017, 586:782-791.
    [20] 王丽媛, 周灵辉. 快速溶剂萃取技术在环境监测中的应用[J]. 黑龙江环境通报, 2011,35(4):65-67.

    WANG L Y, ZHOU L H. Applicatin of accelerated solvent extraction in environment monitoring[J]. Heilongjiang Environmental Journal, 2011,35(4):65-67(in Chinese).

    [21] 郑琳,张钟,陈湘,等.超声波辅助提取红米色素的工艺研究[J].现代食品科技,2011,27(3):296-298.

    ZHENG L, ZHANG Z, CHEN X, et al. Ultrasonic-assisted extraction of red rice pigment[J]. Modern Food Science and Technology,2011,27(3):296-298(in Chinese).

    [22] BEKELE T G, ZHAO H X, WANG Y, et al. Measurement and prediction of bioconcentration factors of organophosphate flame retardants in common carp (Cyprinus carpio)[J]. Ecotoxicology and Environmental Safety,2018, 166:270-276.
    [23] CHEN Y, CHEN Y J, ZHANG Y H, et al. Determination of HFRs and OPFRs in PM2.5 by ultrasonic-assisted extraction combined with multi-segment column purification and GC-MS/MS[J]. Talanta, 2019,194:320-328.
    [24] LEE M H, LIN C C. Comparison of techniques for extraction of isoflavones from the root of Radix Puerariae:Ultrasonic and pressurized solvent extractions[J]. Food Chemistry, 2007, 105(1):223-228.
    [25] 闫蕊, 邵明媛, 孙长华, 等. 加速溶剂萃取-高效液相色谱串联质谱法测定土壤中邻苯二甲酸酯[J]. 分析化学, 2014,42(6):897-903.

    YAN R, SHAO M Y, SUN C H, et al. Determination of 11 phthalic acid esters in soil by accelerated solvent extraction-liquid chromatography tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2014,42(6):897-903(in Chinese).

    [26] 裴镜澄, 吴明红, 向甲甲, 等. 加速溶剂萃取-同步净化/气相色谱-质谱法检测沉积物中4种新型溴代阻燃剂[J]. 分析测试学报, 2014, 33(7):773-779.

    PEI J C, WU M H, XIANG J J, et al. Determination of four kinds of novel brominated flame retardants in sediments by gas chromatography-mass spectrometry combined with accelerated solvent extraction-synchronous purification[J]. Journal of Instrumental Analysis, 2014, 33(7):773-779(in Chinese).

    [27] 卫碧文, 于文佳, 郑翊, 等. GC-MS测定纺织品中多环芳烃[J]. 印染, 2010, 36(5):38-40.

    WEI W Y, YU W J, ZHENG Y, et al. Determination of PAHs in textiles by GC-MS method[J]. Dyeing and Finishing, 2010, 36(5):38-40(in Chinese).

    [28] 于文佳, 卫碧文, 杨荣静. 液相色谱-串联质谱法快速测定电子电气产品中全氟辛酸和全氟辛烷磺酸[J]. 分析试验室, 2010, 29(9):41-44.

    YU W J, WEI B W, YANG R J. Rapid determination of perfluorooctanic acid and perfluorooctanic sulfonic acid in electrical and electronic products by high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2010, 29(9):41-44(in Chinese).

    [29] 索莉莉, 朱群英, 胡美华. 超声辅助萃取-液相色谱-串联质谱法同时检测水产品中11种有机磷酸酯类阻燃剂[J]. 食品工业科技, 2018, 39(6):216-222.

    SUO L L, ZHU Q Y, HU M H. Simultaneous determination of 11 organophosphate esters in aquatic product by ultrasound-assisted extraction coupled with LC-MS/MS[J]. Science and Technology of Food Industry, 2018,39(6):216-222(in Chinese).

    [30] 郭宗宁, 黄雪琳, 林殷, 等. 超声辅助离子液体冷诱导微萃取法测定肉类中氟甲喹和萘啶酸[J]. 化学研究与应用, 2019, 31(4):773-776.

    GUO Z N, HUANG X L, LIN Y, et al. Determination of flumequine and nalidix acidin meatby ultrasound-assisted ionic liquid cold-induced aggregation microextraction[J]. Chemical Research and Application, 2019, 31(4):773-776(in Chinese).

    [31] 常君瑞, 李娜, 徐春雨, 等. 索氏与超声法提取PM2.5中多环芳烃的比较[J]. 环境卫生学杂志, 2015,5(2):80-84.

    CHANG J R, LI N, XU C Y, et al. Comparison of soxhlet and ultrasonic method for extraction polycyclic aromatic hydrocarbons in PM2.5[J]. Journal of Environmental Hygiene, 2015,5(2):80-84(in Chinese).

    [32] CHOO G, CHO H S, PARK K, et al. Tissue-specific distribution and bioaccumulation potential of organophosphate flame retardants in crucian carp[J]. Environmental Pollution, 2018, 239:161-168.
    [33] BESTVATER L L. The persistence, bioaccumulation, and inherent toxicity of two organophosphate flame retardants tris (2-butoxyethyl) phosphate and tris (1-chloro-2-propyl) phosphate in juvenile rainbow trout (Oncorhynchus mykiss)[D]. Canada:University of Manitoba, 2014.
    [34] WANG G, DU Z, CHEN H, et al. Tissue-specific accumulation, depuration, and transformation of triphenyl phosphate (TPHP) in adult zebrafish (danio rerio)[J]. Environmental Science and Technology, 2016, 50(24):13555-13564.
    [35] CEQUIER E, MARCE ROSA MARIA, BECHER G, et al. A high-throughput method for determination of metabolites of organophosphate flame retardants in urine by ultra-performance liquid chromatography-high resolution mass spectrometry[J]. Analytica Chimica Acta, 2014, 845:98-104.
    [36] 邓冰, 王和义, 蒋树斌,等. 铀在小鼠体内的分布及其影响因素的初步探讨[J]. 环境化学, 2011,30(7):1247-1252.

    DENG B, WANG H Y, JIANG S B, et al. The biodistribution of uranium in mice[J]. Environmental Chemistry, 2011,30(7):1247-1252(in Chinese).

    [37] LIU Y E, LUO X J, CORELLA P Z, et al. Organophosphorus flame retardants in a typical freshwater food web:Bioaccumulation factors, tissue distribution, and trophic transfer[J]. Environmental Pollution, 2019, 255:113286.
    [38] MEHINTO A C, HILL E M, TYLER C R. Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (oncorhynchus mykiss)[J]. Environmental Science & Technology, 2010, 44(6):2176-2182.
  • 加载中
计量
  • 文章访问数:  2913
  • HTML全文浏览数:  2913
  • PDF下载数:  139
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-31
陈敏, 廖晓亮, 杨春, 宋德浩, 陈智锋, 刘国光, 祁增华, 蔡宗苇. 典型有机磷酸酯在小鼠组织内的特异性分布[J]. 环境化学, 2020, (10): 2627-2636. doi: 10.7524/j.issn.0254-6108.2019123101
引用本文: 陈敏, 廖晓亮, 杨春, 宋德浩, 陈智锋, 刘国光, 祁增华, 蔡宗苇. 典型有机磷酸酯在小鼠组织内的特异性分布[J]. 环境化学, 2020, (10): 2627-2636. doi: 10.7524/j.issn.0254-6108.2019123101
CHEN Min, LIAO Xiaoliang, YANG Chun, SUN Dehao, CHEN Zhifeng, LIU Guoguang, QI Zenghua, CAI Zongwei. The tissue accumulation and distribution of typical organophosphate flame retardants (OPFRs) in mice[J]. Environmental Chemistry, 2020, (10): 2627-2636. doi: 10.7524/j.issn.0254-6108.2019123101
Citation: CHEN Min, LIAO Xiaoliang, YANG Chun, SUN Dehao, CHEN Zhifeng, LIU Guoguang, QI Zenghua, CAI Zongwei. The tissue accumulation and distribution of typical organophosphate flame retardants (OPFRs) in mice[J]. Environmental Chemistry, 2020, (10): 2627-2636. doi: 10.7524/j.issn.0254-6108.2019123101

典型有机磷酸酯在小鼠组织内的特异性分布

    通讯作者: 祁增华, E-mail: zenghuaqi@gmail.com ;  蔡宗苇, E-mail: zwcai@hkbu.edu.hk
  • 1. 广东工业大学环境科学与工程学院, 广州, 510006;
  • 2. 香港浸会大学化学系, 环境与生物分析国家重点实验室, 香港, 999077
基金项目:

国家自然科学基金(21806025,91543202)和广东省自然科学基金(2019A1515011294)资助.

摘要: 基于气相色谱质谱(GC-MS/MS)联用建立了生物体内典型有机磷酸酯(OPFRs)的高效提取和仪器分析方法,并探讨了其在小鼠组织中的积累分布特征.本研究通过对样品提取、净化和仪器定性定量等环节的条件优化,建立了高效测定机体中典型OPFRs的超声辅助萃取-无乙二胺-N-丙基硅烷(PSA)柱净化-气相色谱质谱分析方法.结果显示,在最优条件下加标样品中氘代磷酸三丁酯TnBP-d27和氘代磷酸三苯酯TPhP-d15的回收率分别为104.86%和102.12%.暴露实验采用昆明(KM)小鼠单次尾静脉注射OPFRs标记物的方式,分时间段取样,获得实际样品.使用本文建立的方法对实际样品进行定量分析,TnBP-d27和TPhP-d15的线性范围在1—200 μg·L-1之间,r2 > 0.99,检出限为0.02—1.08 μg·L-1,定量限为0.06—3.61 μg·L-1;平均回收率为54.04%—130.29%,相对标准偏差(RSDs)为9.58%—18.21%;TnBP-d27主要在脾脏(36 h)和肾脏(24 h)富集,分别为(8.55±1.00) ng·g-1和(20.34±6.60) ng·g-1;TPhP-d15主要在肾脏(12 h)富集,为(29.86±11.90) ng·g-1.

English Abstract

参考文献 (38)

返回顶部

目录

/

返回文章
返回