燃煤电站CFB锅炉飞灰热处理中汞释放特性
Release characteristics of mercury in fly ashes collected from coal-fired CFB power units during thermal treatment
-
摘要: 为考察循环流化床锅炉飞灰的汞释放特性,本文以某循环流化床CFB锅炉燃煤发电机组飞灰为样品,通过热处理实验和程序升温热解实验考察温度和时间对飞灰样品汞释放特性的影响以及热处理前后飞灰中汞的种类及其释放规律,并结合一级动力学方程、Elovich动力学方程、Freundlich动力学方程和抛物线扩散动力学方程对该过程进行具体分析.热处理实验结果表明,飞灰汞释放速率与热处理的温度和时间密切相关.温度为200℃以下时飞灰中汞的释放率最大不超过0.2,当温度达到300℃以上时,飞灰中汞的释放率不低于0.935.程序升温热解实验表明,飞灰中汞化合物种类包括HgCl2、Hg2Cl2、HgO、HgSO4、HgS(黑)和HgS(红),其中HgS(黑)和HgS(红)是飞灰中汞的主要赋存形态.动力学方程拟合结果表明,Elovic动力学方程适用于描述飞灰汞释放过程,各实验条件下拟合值与实验值的相关系数R2均大于0.95,这说明该过程受多个反应机制控制且反应中活化能变化较大.Abstract: In order to investigate release characteristics of mercury in fly ashes collected from a coal-fired CFB power unit, the effect of temperature and time on mercury release characteristics of fly ash samples as well as release rules of mercury in fly ash samples were analyzed through the heat treatment experiments and temperature-programmed pyrolysis experiments. Moreover, the mechanism of mercury adsorption was examined based on the fitting results of first order kinetic model, Elovich kinetic model, Freundlich kinetic model and parabolic diffusion kinetic model. The results of heat treatment experiments showed that mercury release rate of the CFB fly ash was closely related to the heating temperature and time. The release rate of mercury in the CFB fly ash was lower than 0.2 at temperature below 200 ℃, while the release rate of mercury in the CFB fly ash was no less than 0.935 at the temperature over 300 ℃. The results of temperature-programmed pyrolysis experiments suggested that Mercury species present in the fly ash include HgCl2, Hg2Cl2, HgO, HgSO4, HgS (black) and HgS (red). HgS (black) and HgS (red) were the main mercury species present in the fly ash. The fitting results of kinetic equation showed that Elovich kinetic model was more applicable to reflect the Hg release from the fly ash, while the correlation coefficient R2 between the experimental and calculated data was greater than 0.95. It is indicated that this process controlled by multiple reaction mechanisms, and the activation energy changes greatly.
-
Key words:
- CFB boiler /
- fly ash /
- mercury /
- release /
- kinetic model
-
[1] UNEP. Mercury fate and transport in the global atmosphere:Measurement, models and policy implication report[R]. Geneva:UNEP, 2008. [2] UNEP. Global mercury assessment 2013:Sources, emissions, releases and environmental transport[R]. Geneva, Switzerland:UNEP Chemicals Branch, 2013. [3] 孙淑静, 刘学敏. 我国粉煤灰资源化利用现状、问题及对策分析[J]. 粉煤灰综合利用, 2015(3):49-52. SUN S J, LIU X M. Recycling utilization of fly ash in china:Situations, problems and countermeasures[J]. Fly Ash Comprehensive Utilization, 2015 (3):49-52(in Chinese).
[4] 任建莉, 周劲松, 骆仲泱, 等. 燃煤电站汞排放分布及控制研究的进展[J]. 电站系统工程, 2006, 22(1):44-46. REN J L, ZHOU J S, LUO Z Y, et al. A review of mercury speciation and control for coal-fired power plants[J]. Power System Engineering, 2006, 22(1):44-46(in Chinese).
[5] PAVLISH J H, SONDREAL E A, MANN M D, et al. Status review of mercury control options for coal-fired power plants[J]. Fuel Processing Technology, 2003, 82(2):89-165. [6] 姚多喜, 支霞臣, 郑宝山. 煤燃烧过程中5种微量元素的迁移和富集[J]. 环境化学, 2004, 23(1):31-37. YAO D X, ZHI X C, ZHENG B S. The transformation and concentration of 5 trace elements during coal combustion[J]. Environmental Chemistry, 2004, 23(1):31-37(in Chinese).
[7] 孟阳, 王书肖. 粉煤灰综合利用过程中汞的二次释放规律研究[J]. 环境科学, 2012, 33(9):2993-2999. MENG Y, WANG S X. Study on mercury re-emissions during fly ash utilization[J]. Environmental Science, 2012, 33(9):2993-2999(in Chinese).
[8] 张淼, 张梦泽, 董勇. 燃煤电厂固废利用过程中汞的二次污染分析[J]. 节能技术, 2014, 32(1):45-47. ZHANG M, ZHANG M Z, DONG Y. Analyze of mercury re-emission during the utilization of coal-fired power plant solid wastes[J]. Energy Conservation Technology, 2014, 32(1):45-47(in Chinese).
[9] RUBEL A M, HOWER J C, MARDON S M, et al. Thermal stability of mercury captured by ash[J]. Fuel, 2006, 85(17-18):2509-2515. [10] 武成利, 陈晨, 田梦琦, 等. 燃煤电厂粉煤灰中汞的稳定性研究[J]. 环境污染与防治, 2016, 38(6):20-23. WU C L, CHEN C, TIAN M Q, et al. Study on the stability of mercury in fly ash at coal-fired power plant[J]. Environmental Pollution and Prevention, 2016,38(6):20-23(in Chinese).
[11] 高正阳, 吕少昆, 陈嵩涛, 等. ESP对燃煤电站锅炉颗粒汞形态及热稳定性的影响[J]. 华北电力大学学报:自然科学版, 2015, 42(1):63-68. GAO Z Y, LV S K, CHEN S T, et al. ESP effects on particulate mercury speciation and thermal stability in coal-fired utility boiler[J]. Journal of North China Electric Power University, 2015, 42(1):63-68(in Chinese).
[12] 程乐鸣, 岑可法, 倪明江, 等.循环流化床锅炉炉膛热力计算[J].中国电机工程学报,2002,22(12):146-151. CHENG L M, CEN K F, NI M J, et al. Thermal calculation of a circulating fluidized bed boiler furnace[J]. Proceedings of the CSEE, 2002, 22(12):146-151(in Chinese).
[13] 姜秀民, 孙东红, 闫澈, 等. 65t/h示范性油页岩循环流化床电厂锅炉运行实践[J].中国电机工程学报,2001,21(2):69-73. JIANG X M, SUN D H, YAN C, et al. Performance characteristics of 65t/h oil shale-fired circulating fluidized bed demonstration utility boiler[J].Proceedings of the CSEE,2001,21(2):69-73(in Chinese).
[14] 谢磊, 毛国明, 金晓明,等. 循环流化床锅炉燃烧过程预测控制与经济性能优化[J]. 化工学报, 2016, 67(3):695-700. XIE L, MAO G M, JIN X M, et.al. Predictive control and economic performance optimization of CFBB combustion process[J]. CIESC Journal, 2016, 67(3):695-700(in Chinese).
[15] WANG S, ZHANG Y, GU Y, et al. Using modified fly ash for mercury emissions control for coal-fired power plant applications in China[J]. Fuel, 2016, 16; 1230-1237. [16] 段钰锋, 江贻满, 杨立国,等. 循环流化床锅炉汞排放和吸附实验研究[J]. 中国电机工程学报, 2008, 28(32):1-5. DUAN Y F, JIANG Y M, YANG L G, et.al. Experimental study on mercury emission and adsorption in circulating fluidized bed boiler[J]. Proceedings of the CSEE, 2008, 28(32):1-5(in Chinese).
[17] 樊保国, 贾里, 李晓栋, 等. 电站燃煤锅炉飞灰特性对其吸附汞能力的影响[J]. 动力工程学报, 2016, 36(8):621-628. FAN B G, JIA L, LI X D, et.al. Study on mercury adsorption by fly ash form coal-fired coilers of power plants[J]. Journal of Chinese Society of Power Engineering, 2016, 36(8):621-628(in Chinese).
[18] 李晓航, 刘芸, 苏银皎, 等. 煤粉炉和循环流化床锅炉飞灰特性对其汞吸附能力的影响[J]. 化工学报, 2019, 70(3):295-302. LI X H, LIU Y, SU Y J, et al. Difference of fly ash characteristics from PC and CFB boilers and its effect on mercury adsorption capability[J]. CIESC Journal, 2019, 70(3):295-302(in Chinese).
[19] 李晓航,刘红刚,路建洲,等.煤粉炉和循环流化床锅炉飞灰吸附汞动力学及其吸附机制[J]. 化工学报, 2019,70(11):4397-4409. LI X H, LIU H G, LU J Z, et al. Kinetics and mechanism of mercury adsorption on fly ashes from pulverized coal boiler and circulating fluidized bed boiler[J]. CIESC Journal, 2019, 70(11):4397-4409(in Chinese).
[20] 苏银皎, 刘轩, 李丽锋, 等. 三类煤阶煤中汞的赋存形态分布特征[J]. 化工学报, 2019, 70(4):324-331. SU Y J, LI X H, LI L F, et al. Distribution characteristics of mercury speciation in coals with three different ranks[J]. CIESC Journal, 2019, 70(4):324-331(in Chinese).
[21] LOPZE-ANTON M A, YUAN Y, PERRY R, et al. Analysis of mercury species present during coal combustion by thermal desorption[J]. Fuel, 2010, 89(3):629-634. [22] 于颖, 邵子婴, 刘靓,等. 热强化气相抽提法修复半挥发性石油烃污染土壤的影响因素[J]. 环境工程学报, 2017, 11(4):2252-2257. YU Y, SHAO Z Y, LIU L, et al. Factors influencing remediation of semi-volatile petroleum hydrocarbon-contaminated soil by thermally enhanced soil vapor extraction[J]. Chinese Journal of Environmental Engineering, 2017,11(4):2252-2257(in Chinese).
[23] 涂从. 土壤体系中的化学动力学方程及其应用[J]. 热带亚热带土壤科学, 1994, 3(3):175-182. TU C. Equations of chemical kineties and their application to soil system[J]. Tropical and Subtropical Soil Science, 1994,3(3):175-182(in Chinese).
[24] 许端平, 何依琳, 庄相宁, 等. 热解吸修复污染土壤过程中DDTs的去除动力学[J]. 环境科学研究, 2013, 26(2):202-207. XU D P, HE Y L, ZHUANG X Y, et al. Desorption kinetics of DDTs from contaminated soil during processes of thermal desorption[J]. Research of Environmental Sciences, 2013, 26(2):202-207(in Chinese).
[25] COURCHESNE F, HENDERSHOT W H. Kinetics of sulfate of desorption from two spodosols of the laurentians, quebec1[J]. Soil Science, 1990, 150(6):858-866.
计量
- 文章访问数: 1789
- HTML全文浏览数: 1789
- PDF下载数: 55
- 施引文献: 0