ZIF-67高效吸附去除水中的洛克沙胂

庞达, 王崇臣, 王鹏, 付会芬, 赵晨. ZIF-67高效吸附去除水中的洛克沙胂[J]. 环境化学, 2020, (6): 1451-1463. doi: 10.7524/j.issn.0254-6108.2020021804
引用本文: 庞达, 王崇臣, 王鹏, 付会芬, 赵晨. ZIF-67高效吸附去除水中的洛克沙胂[J]. 环境化学, 2020, (6): 1451-1463. doi: 10.7524/j.issn.0254-6108.2020021804
PANG Da, WANG Chongchen, WANG Peng, FU Huifen, ZHAO Chen. Efficiently adsorptive removal towards roxarsone with ZIF-67[J]. Environmental Chemistry, 2020, (6): 1451-1463. doi: 10.7524/j.issn.0254-6108.2020021804
Citation: PANG Da, WANG Chongchen, WANG Peng, FU Huifen, ZHAO Chen. Efficiently adsorptive removal towards roxarsone with ZIF-67[J]. Environmental Chemistry, 2020, (6): 1451-1463. doi: 10.7524/j.issn.0254-6108.2020021804

ZIF-67高效吸附去除水中的洛克沙胂

  • 基金项目:

    国家自然科学基金(51878023)和北京市优秀人才项目(2019A22)资助.

Efficiently adsorptive removal towards roxarsone with ZIF-67

  • Fund Project: Supported by the National Natural Science Foundation of China(51878023) and Beijing Talent Project(2019A22).
  • 摘要: 作为一类很有应用前景的金属有机骨架材料(MOFs),沸石咪唑酯骨架(ZIFs)由于具有比表面积大、孔隙可调、易于实现内外位点功能化等优点,广泛受到人们的关注.作为ZIFs材料的一种,具有上述特点的沸石咪唑酯骨架-67(ZIF-67)由Co2+离子和2-甲基咪唑通过配位及自组装形成.ZIF-67拥有高度稳定的结构,在吸附、分子分离、传感、催化等领域有着广泛的应用.本研究利用一种环境友好型的方法合成了ZIF-67,并用来吸附去除水中的洛克沙胂.探究了吸附过程中的吸附动力学、吸附热力学行为和吸附机理.实验结果表明,ZIF-67对水中的洛克沙胂具有优良的吸附性能,在pH=6时最大吸附量可以达到172.45 mg·g-1,吸附动力学与热力学行为分别符合准二级动力学和Langmuir吸附等温模型.ZIF-67对洛克沙胂的吸附机理可能是静电吸附和离子交换作用.通过固定床小柱实验表明ZIF-67具有很好的实际应用性能.
  • 加载中
  • [1] SARKAR A, PAUL B. The global menace of arsenic and its conventional remediation-A critical review[J]. Chemosphere, 2016, 158:37-49.
    [2] MOHAMMED Abdul K S, JAYASINGHE S S, CHANDANA E P S, et al. Arsenic and human health effects:A review[J]. Environmental Toxicol ogy and Pharmacology, 2015, 40(3):828-846.
    [3] MOHAN D, PITTMAN C U. Arsenic removal from water/wastewater using adsorbents-A critical review[J]. Journal of Hazardous Materials, 2007, 142(1):1-53.
    [4] SMITH A H, LOPIPERO P A, BATES M N, et al. Arsenic epidemiology and drinking water standards[J]. Science, 2002, 296(5576):2145.
    [5] ZHANG A Y, HUANG N H, ZHANG C, et al. Heterogeneous Fenton decontamination of organoarsenicals and simultaneous adsorption of released arsenic with reduced secondary pollution[J]. Chemical Engineering Journal, 2018, 344:1-11.
    [6] WANG L, CHENG H. Birnessite (δ-MnO2) mediated degradation of organoarsenic feed additive p-arsanilic acid[J]. Environmental Science & Technology, 2015, 49(6):3473-3481.
    [7] MOHAMMED ABDUL K S, JAYASINGHE S S, CHANDANA E P S, et al. Arsenic and human health effects:A review[J]. Environmental Toxicology and Pharmacology, 2015, 40(3):828-846.
    [8] LIN Z J, ZHENG H Q, ZENG Y N, et al. Effective and selective adsorption of organoarsenic acids from water over a Zr-based metal-organic framework[J]. Chemical Engineering Journal, 2019, 378:122196.
    [9] FEI J, WANG T, ZHOU Y, et al. Aromatic organoarsenic compounds (AOCs) occurrence and remediation methods[J]. Chemosphere, 2018, 207:665-675.
    [10] LI B, ZHU X, HU K, et al. Defect creation in metal-organic frameworks for rapid and controllable decontamination of roxarsone from aqueous solution[J]. Journal of Hazardous Materials, 2016, 302:57-64.
    [11] BEDNAR A J, GARBARINO J R, FERRER I, et al. Photodegradation of roxarsone in poultry litter leachates[J]. Science of The Total Environment, 2003, 302(1):237-245.
    [12] WANG C, LUAN J, WU C. Metal-organic frameworks for aquatic arsenic removal[J]. Water Research, 2019, 158:370-382.
    [13] SIERRA-ALVAREZ R, CORTINAS I, FIELD J A. Methanogenic inhibition by roxarsone (4-hydroxy-3-nitrophenylarsonic acid) and related aromatic arsenic compounds[J]. Journal of Hazardous Materials, 2010, 175(1):352-358.
    [14] POON L, YOUNUS S, WILSON L D. Adsorption study of an organo-arsenical with chitosan-based sorbents[J]. Journal of Colloid and Interface Science, 2014, 420:136-144.
    [15] HU J, TONG Z, CHEN G, et al. Adsorption of roxarsone by iron (hydr)oxide-modified multiwalled carbon nanotubes from aqueous solution and its mechanisms[J]. International Journal of Environmental Science and Technology, 2014, 11(3):785-794.
    [16] WANG C C, LI J R, LV X L, et al. Photocatalytic organic pollutants degradation in metal-organic frameworks[J]. Energy Environmental Science, 2014, 7(9):2831-2867.
    [17] YI X H, MA S Q, DU X D, et al. The facile fabrication of 2D/3D Z-scheme g-C3N4/UiO-66 heterojunction with enhanced photocatalytic Cr(Ⅵ) reduction performance under white light[J]. Chemical Engineering Journal, 2019, 375:121944.
    [18] 王茀学, 王崇臣, 王鹏, 等. UiO系列金属-有机骨架的合成方法与应用[J]. 无机化学学报, 2017, 33(5):713-737.

    WANG F X, WANG C C, WANG P, et al. Syntheses and applications of UiO series of MOFs[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(5):713-737(in Chinese).

    [19] WANG C C, YI X H, WANG P. Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance[J]. Applied Catalysis B:Environmental, 2019, 247:24-48.
    [20] WANG X, LIU W, FU H, et al. Simultaneous Cr(Ⅵ) reduction and Cr(Ⅲ) removal of bifunctional MOF/Titanate nanotube composites[J]. Environmental Pollution, 2019, 249:502-511.
    [21] CHEN D D, YI X H, ZHAO C, et al. Polyaniline modified MIL-100(Fe) for enhanced photocatalytic Cr(Ⅵ) reduction and tetracycline degradation under white light[J]. Chemosphere, 2020, 245:125659.
    [22] LI J J, WANG C C, FU H F, et al. High-performance adsorption and separation of anionic dyes in water using a chemically stable graphene-like metal-organic framework[J]. Dalton Transactions, 2017, 46(31):10197-10201.
    [23] DU X D, WANG C C, LIU J G, et al. Extensive and selective adsorption of ZIF-67 towards organic dyes:Performance and mechanism[J]. Journal of Colloid and Interface Science, 2017, 506:437-441.
    [24] WANG C Y, FU H, WANG P, et al. Highly sensitive and selective detect of p-arsanilic acid with a new water-stable europium metal-organic framework[J]. Applied Organometallic Chemistry, 2019, 33(8):e5021.
    [25] LIU A, WANG C C, WANG C Z, et al. Selective adsorption activities toward organic dyes and antibacterial performance of silver-based coordination polymers[J]. Journal of Colloid and Interface Science, 2018, 512:730-739.
    [26] BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865):939.
    [27] JIANG J Q, YANG C X, YAN X P. Zeolitic Imidazolate Framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution[J]. ACS Applied Materials & Interfaces, 2013, 5(19):9837-9842.
    [28] SU S, CHE R, LIU Q, et al. Zeolitic Imidazolate Framework-67:A promising candidate for recovery of uranium (Ⅵ) from seawater[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 547:73-80.
    [29] ANDREW LIN K Y, LEE W D. Self-assembled magnetic graphene supported ZIF-67 as a recoverable and efficient adsorbent for benzotriazole[J]. Chemical Engineering Journal, 2016, 284:1017-1027.
    [30] LI X, GAO X, AI L, et al. Mechanistic insight into the interaction and adsorption of Cr(Ⅵ) with zeolitic imidazolate framework-67 microcrystals from aqueous solution[J]. Chemical Engineering Journal, 2015, 274:238-246.
    [31] QIN J, WANG S, WANG X. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst[J]. Applied Catalysis B:Environmental, 2017, 209:476-482.
    [32] PARK H, AMARANATHA R D, KIM Y, et al. Zeolitic imidazolate framework-67(ZIF-67) rhombic dodecahedrons as full-spectrum light harvesting photocatalyst for environmental remediation[J]. Solid State Sciences, 2016, 62:82-89.
    [33] DMELLO M E, SUNDARAM N G, KALIDINDI S B. Assembly of ZIF-67 metal-organic framework over tin oxide nanoparticles for synergistic chemiresistive CO2 gas sensing[J]. Chemistry-A European Journal, 2018, 24(37):9220-9223.
    [34] CRAVILLON J, M NZER S, LOHMEIER S J, et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework[J]. Chemistry of Materials, 2009, 21(8):1410-1412.
    [35] LI Z, JIANG Z, ZHU W, et al. Facile preparation of CoSe2 nano-vesicle derived from ZIF-67 and their application for efficient water oxidation[J]. Applied Surface Science, 2020, 504:144368.
    [36] 王家宏, 雷思莉. 磺酸基改性磁性吸附剂去除水中的Cu(Ⅱ)[J]. 环境化学, 2019, 38(8):1785-1792.

    WANG J H, LEI S L. Removal of Cu(Ⅱ) by sulfonic acid modified magnetic adsorbent[J]. Environmental Chemistry, 2019,38(8):1785-1792(in Chinese).

    [37] 郭广亮, 王崇臣, 王鹏. 生物陶吸附酸性品红的性能[J]. 环境化学, 2014, 33(5):805-811.

    GUO G L, WANG C C, WANG P. Adsorption of acid fuchsin on biopottery:Kinetic and thermodynamic studies[J]. Environmental Chemistry, 2014, 33(5):805-811(in Chinese).

    [38] 胡一帆, 王文兵, 仵彦卿. 弱磁场强化零价铁去除水中砷的效果[J]. 环境化学, 2019, 38(5):1074-1081.

    HU Y F, WANG W B, WU Y Q. The role of weak magnetic field in accelerating the removal of arsenic by zero-valent iron[J]. Environmental Chemistry, 2019, 38(5):1074-1081(in Chinese).

    [39] TIAN C, ZHAO J, OU X, et al. Enhanced adsorption of p-arsanilic acid from water by amine-modified UiO-67 as examined using extended X-ray absorption fine structure, X-ray photoelectron spectroscopy, and density functional theory calculations[J]. Environmental Science & Technology, 2018, 52(6):3466-3475.
    [40] HU Q, LIU Y, GU X, et al. Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles[J]. Chemosphere, 2017, 181:328-336.
    [41] MA J, ZHUANG Y, YU F. Equilibrium, kinetic and thermodynamic adsorption studies of organic pollutants from aqueous solution onto CNT/C@Fe/chitosan composites[J]. New Journal of Chemistry, 2015, 39(12):9299-9305.
    [42] JUN J W, TONG M, JUNG B K, et al. Effect of central metal ions of analogous metal-organic frameworks on adsorption of organoarsenic compounds from water:Plausible mechanism of adsorption and water purification[J]. Chemistry-A European Journal, 2015, 21(1):347-354.
    [43] 张佳, 任秉雄, 王鹏, 等. 山茶籽粉吸附亚甲基蓝的性能研究[J]. 环境化学, 2013, 32(8):1539-1545.

    ZHANG J, REN B X, WANG P, et al. Mechanistic study on adsorption of methylene blue on tea seed powder[J]. Environmental Chemistry, 2013, 32(8):1539-1545(in Chinese).

    [44] 谢超然, 王兆炜, 朱俊民, 等. 核桃青皮生物炭对重金属铅、铜的吸附特性研究[J]. 环境科学学报, 2016, 36(4):1190-1198.

    XIE C R,WANG Z W,ZHU J M,et al.Adsorption of lead and copper from aqueous solutions on biochar produced from walnut green husk[J].Acta Scientiae Circumstantiae,2016,36(4):1190-1198(in Chinese).

    [45] DU X D, WANG C C, ZHONG J, et al. Highly efficient removal of Pb2+ by a polyoxomolybdate-based organic-inorganic hybrid material {(4-Hap)4[Mo8O26]}[J]. Journal of Environmental Chemical Engineering, 2017, 5(2):1866-1873.
    [46] HE X, DENG F, SHEN T, et al. Exceptional adsorption of arsenic by zirconium metal-organic frameworks:Engineering exploration and mechanism insight[J]. Journal of Colloid and Interface Science, 2019, 539:223-234.
    [47] 张华夏, 石林. 羧甲基纤维素钠稳定纳米硫化亚铁吸附砷研究[J]. 水处理技术, 2019, 45(4):37-42.

    ZHANG H X, SHI L. Study on adsorption of arsenic on carboxymethylcellulose sodium stabilized ferrous sulfide nanoparticles[J]. Technology of Water Treatment, 2019, 45(4):37-42(in Chinese).

    [48] JIAN M, LIU B, ZHANG G, et al. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8(ZIF-8) nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 465:67-76.
    [49] YU W, LUO M, YANG Y, et al. Metal-organic framework (MOF) showing both ultrahigh As(Ⅴ) and As(Ⅲ) removal from aqueous solution[J]. Journal of Solid State Chemistry, 2019, 269:264-270.
    [50] 李松原, 梁晓怿, 林云, 等. 活性炭流化床对VOCs的吸附条件及吸附边界曲线的研究[J]. 现代化工, 2018, 38(8):166-171.

    LI S Y, LIANG X Y, LIN Y, et al. Study on adsorption conditions and adsorption boundary condition curve of activated carbon fluidized bed to VOCs[J]. Modern Chemical Industry, 2018, 38(8):166-171(in Chinese).

    [51] SUI J, WANG L, ZHAO W, et al. Iron-naphthalenedicarboxylic acid gels and their high efficiency in removing arsenic(Ⅴ)[J]. Chemical Communications, 2016, 52(43):6993-6996.
    [52] SARACCO G, VANKOVA S, PAGLIANO C, et al. Outer Co(Ⅱ) ions in Co-ZIF-67 reversibly adsorb oxygen from both gas phase and liquid water[J]. Physical Chemistry Chemical Physics, 2014, 16(13):6139-6145.
    [53] LI J, WU Y N, LI Z, et al. Zeolitic imidazolate framework-8 with high efficiency in trace arsenate adsorption and removal from water[J]. The Journal of Physical Chemistry C, 2014, 118(47):27382-27387.
    [54] JIANG X, CHEN H Y, LIU L L, et al. Fe3O4 embedded ZIF-8 nanocrystals with ultra-high adsorption capacity towards hydroquinone[J]. Journal of Alloys and Compounds, 2015, 646:1075-1082.
  • 加载中
计量
  • 文章访问数:  4834
  • HTML全文浏览数:  4834
  • PDF下载数:  144
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-02-18
庞达, 王崇臣, 王鹏, 付会芬, 赵晨. ZIF-67高效吸附去除水中的洛克沙胂[J]. 环境化学, 2020, (6): 1451-1463. doi: 10.7524/j.issn.0254-6108.2020021804
引用本文: 庞达, 王崇臣, 王鹏, 付会芬, 赵晨. ZIF-67高效吸附去除水中的洛克沙胂[J]. 环境化学, 2020, (6): 1451-1463. doi: 10.7524/j.issn.0254-6108.2020021804
PANG Da, WANG Chongchen, WANG Peng, FU Huifen, ZHAO Chen. Efficiently adsorptive removal towards roxarsone with ZIF-67[J]. Environmental Chemistry, 2020, (6): 1451-1463. doi: 10.7524/j.issn.0254-6108.2020021804
Citation: PANG Da, WANG Chongchen, WANG Peng, FU Huifen, ZHAO Chen. Efficiently adsorptive removal towards roxarsone with ZIF-67[J]. Environmental Chemistry, 2020, (6): 1451-1463. doi: 10.7524/j.issn.0254-6108.2020021804

ZIF-67高效吸附去除水中的洛克沙胂

  • 北京建筑大学建筑结构与环境修复功能材料北京市重点实验室, 北京, 100044
基金项目:

国家自然科学基金(51878023)和北京市优秀人才项目(2019A22)资助.

摘要: 作为一类很有应用前景的金属有机骨架材料(MOFs),沸石咪唑酯骨架(ZIFs)由于具有比表面积大、孔隙可调、易于实现内外位点功能化等优点,广泛受到人们的关注.作为ZIFs材料的一种,具有上述特点的沸石咪唑酯骨架-67(ZIF-67)由Co2+离子和2-甲基咪唑通过配位及自组装形成.ZIF-67拥有高度稳定的结构,在吸附、分子分离、传感、催化等领域有着广泛的应用.本研究利用一种环境友好型的方法合成了ZIF-67,并用来吸附去除水中的洛克沙胂.探究了吸附过程中的吸附动力学、吸附热力学行为和吸附机理.实验结果表明,ZIF-67对水中的洛克沙胂具有优良的吸附性能,在pH=6时最大吸附量可以达到172.45 mg·g-1,吸附动力学与热力学行为分别符合准二级动力学和Langmuir吸附等温模型.ZIF-67对洛克沙胂的吸附机理可能是静电吸附和离子交换作用.通过固定床小柱实验表明ZIF-67具有很好的实际应用性能.

English Abstract

参考文献 (54)

返回顶部

目录

/

返回文章
返回