聚乙烯醇海绵负载铑催化剂催化还原对硝基苯酚

许婉馨, 杨波, 陈子伦, 黄琼, 徐海涛. 聚乙烯醇海绵负载铑催化剂催化还原对硝基苯酚[J]. 环境化学, 2020, (9): 2576-2583. doi: 10.7524/j.issn.0254-6108.2020050803
引用本文: 许婉馨, 杨波, 陈子伦, 黄琼, 徐海涛. 聚乙烯醇海绵负载铑催化剂催化还原对硝基苯酚[J]. 环境化学, 2020, (9): 2576-2583. doi: 10.7524/j.issn.0254-6108.2020050803
XU Wanxin, YANG Bo, CHEN Zilun, HUANG Qiong, XU Haitao. Polyvinyl sponge supported rh catalysts for catalytic reduction of P-nitrophenol[J]. Environmental Chemistry, 2020, (9): 2576-2583. doi: 10.7524/j.issn.0254-6108.2020050803
Citation: XU Wanxin, YANG Bo, CHEN Zilun, HUANG Qiong, XU Haitao. Polyvinyl sponge supported rh catalysts for catalytic reduction of P-nitrophenol[J]. Environmental Chemistry, 2020, (9): 2576-2583. doi: 10.7524/j.issn.0254-6108.2020050803

聚乙烯醇海绵负载铑催化剂催化还原对硝基苯酚

    通讯作者: 杨波, E-mail: yb_nuist@163.com
  • 基金项目:

    国家自然科学基金(51902166),江苏省自然科学基金(BK20190786),江苏省高等学校自然科研究面上项目(18KJB430019)和南京信息工程大学人才启动经费(2017r073)资助.

Polyvinyl sponge supported rh catalysts for catalytic reduction of P-nitrophenol

    Corresponding author: YANG Bo, yb_nuist@163.com
  • Fund Project: Supported by National Natural Science Foundation of China (51902166), Natural Science Foundation of Jiangsu Province (BK20190786), Natural Science Research Project of Jiangsu Provincial Colleges and Universities (18KJB430019) and Nanjing University of Information Science and Technology (2017r073)
  • 摘要: 通过改进的浸渍自组装方法获得了一种聚乙烯醇海绵负载型Rh催化剂.Rh/PVA催化剂在对硝基苯酚的催化还原中表现出优异的催化性能.在注射速度为1.5 mL·min-1时,4-NP的转化率接近100%.由于PVA海绵可以减少RhNPs的浸出和聚集的机会,因此循环进样速度为2.0 mL·min-1时,在8个循环后,Rh/PVA-1的转化率依然维持在89.5%.RhNPs的独特性质以及RhNPs与PVA海绵之间的强相互作用导致了一个高效、可回收且具有成本效益的多功能反应器.最后,Rh/PVA催化剂具有较高的催化效率和良好的可重复使用性,为在废水处理和环境毒理学领域中实现提供了可能.
  • 加载中
  • [1] SUN S N, YU Q F, LI M, et al. Preparation of coffee-shell activated carbon and its application for water vaper adsorption[J]. Renewable Energy, 2019, 142:11-19.
    [2] 成岳, 潘顺龙, 魏桂英. 水热合成silicalite-2分子筛及对对硝基苯酚的吸附与脱附性能[J]. 环境化学, 2014, 33(8):1404-1409.

    CHENG Y, PAN S L, WEI G Y. Hydrothermal synthesis of Silicalite-2 zeolites and its adsorption and desorption for p-nitrophenol[J]. Environmental Chemistry, 2014, 33(8):1404-1409(in Chinese).

    [3] ARORA P K, SRIVASRAVA A, SINGH V P. Bacterial degradation of nitrophenols and their derivatives[J]. Journal of Hazardous Materials, 2014, 266:42-59.
    [4] WANG B, LV X L, FENG D, et al. Highly stable Zr(Ⅳ)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. Journal of the American Chemical Society, 2016, 138:6204-6216.
    [5] GARCIA P, MALACRIA M, AUBERT C, et al. Gold-catalyzed cross-couplings:New opportunities for C-C bond formation[J]. Chem Cat Chem, 2010, 2:493-497.
    [6] AHMED S, RASUL M G, MARTENS W N, et al. Heterogeneous photocatalytic degradation of phenols in wastewater:A review on current status and developments[J]. Desalination, 2019, 261:3-18.
    [7] SAMUEL M S, BHATTACHARYA J, PARTHIBAN C, et al. Ultrasound-assisted synthesis of metal organic framework for the photocatalytic reduction of 4-nitrophenol under direct sunlight[J]. Ultrasonics Sonochemistry, 2018, 49:215-221.
    [8] ISMAIL M, KHAN M I, KHAN S B, et al. Catalytic reduction of picric acid, nitrophenols and organic azo dyes via green synthesized plant supported Ag nanoparticles[J]. Journal of Molecular Liquids, 2018, 268:87-101.
    [9] HUANG R L, ZHU H X, SU R X, et al. Catalytic membrane catalyst immobilized with alloy nanoparticle-loaded protein fibrils for continuous reduction of 4-nitrophenol[J]. Environmental Science & Technology, 2016, 50:11263-11273.
    [10] TIAN L, JIANG H L, CHEN P H, et al. A novel GO/PNIPAm hybrid with two functional domains can simultaneously effectively adsorb and recover valuable organic and inorganic resources[J]. Chemical Engineering Journal, 2018, 343:607-618.
    [11] ABBAS T, WASHAWAN T, KHAN A, et al. Iron turning waste media for treating Endosulfan and Heptachlor contaminated water[J]. Science of the Total Environment, 2019, 685:124-133.
    [12] WEBB D, JAMISON T F. Continuous flow multi-step organic synthesis[J]. Chemical Science, 2010, 1:675-680.
    [13] KITAHARA H, RAIKHELKAR J, KIM G, et al. A subcostal approach is favorable compared to sternotomy for left ventricular assist device exchange field of research:Artificial heart (clinical)[J]. Journal of Artificial Organs, 2019, 22:181-187.
    [14] FERLIN F, SANTORO S, ACKERMANN L, et al. Heterogeneous C-H alkenylations in continuous-flow:Oxidative palladium-catalysis in a biomass-derived reaction medium[J]. Green Chemistry, 2017, 19:2510-2514.
    [15] DELIL A D, KOLELI N. Investigation of a combined continuous flow system for the removal of Pd and Cd from heavily contaminated soil[J]. Chemosphere, 2019, 229:181-187.
    [16] MAHMOUD M A, NARAYANAN R, EL-SAYED M A. Enhancing colloidal metallic nanocatalysis:Sharp edges and corners for solid nanoparticles and cage effect for hollow ones[J]. Accounts of Chemical Research, 2013, 46:1795-1805.
    [17] ZHANG A T, LIU B P, LIU S J, et al. Novel approach to immobilize Au nanoclusters on micro/nanostructured carbonized natural lotus leaf as green catalyst with highly efficient catalytic activity[J]. Chemical Engineering Journal, 2019, 371:876-884.
    [18] WANG Y X, MA S, HUANG M N, et al. Ag NPs coated PVDF@TiO2 nanofiber membrane prepared by epitaxial growth on TiO2 inter-layer for 4-NP reduction application[J]. Separation and Purification Technology, 2019, 227:115700.
    [19] LOU J F, CHEN F, WU X L, et al. One-pot and surfactant-free synthesis of ultrafine Pt-Sn nanoparticles supported on onion-like nanocarbons toward efficient methanol and ethylene glycol oxidation reactions[J]. Journal of Nanoscience and Nanotechnology, 2020, 20:2408-2415.
    [20] ALMEIDA C V S, FERREIRA D S, HUANG H L, et al. Highly active Pt3Rh/C nanoparticles towards ethanol electrooxidation[J].Influence of the Catalyst Structure, 2019, 254:113-127.
    [21] PEI C X, OU Q S, YU T, et al. Loading characteristics of nanofiber coated air intake filter media by potassium chloride, ammonium sulfate, and ammonium nitrate fine particles and the comparison with conventional cellulose filter media[J]. Separation and Purification Technology, 2019, 228:115734.
    [22] MONDAL S, YOSHIDA T, RANA U, et al. Thermally stable electrochromic devices using Fe(Ⅱ)-based metallo-supramolecular polymer[J]. Solar Energy Materials and Solar Cells, 2019, 200:110000.
    [23] ZHOU J, YANG F L, MENG F G, et al. Comparison of membrane fouling during short-term filtration of aerobic granular sludge and activated sludge[J]. Journal of Environmental Sciences, 2017, 11:1281-1286.
    [24] LIU L F, ZHAO C Q, YANG F L. TiO2 and polyvinyl alcohol (PVA) coated polyester filter in biocatalyst for wastewater treatment[J]. Water Research, 2012, 46:1969-1978.
    [25] WANG J M, ZHANG C, YANG Y Q, et al. Poly (vinyl alcohol) (PVA) hydrogel incorporated with Ag/TiO2 for rapid sterilization by photoinspired radical oxygen species and promotion of wound healing[J]. Applied Surface Science, 2019, 494:708-720.
    [26] YADAV K, NAIN R, JASSAL M, et al. Free standing flexible conductive PVA nanoweb with well aligned silver nanowires[J]. Composites Science and Technology, 2019, 182:107766.
    [27] JIN Q J, SHEN Y S, LI X J, et al. Resource utilization of waste deNOx catalyst for continuous-flow catalysis by supported metal reactors[J]. Molecular Catalysis, 2020, 480:110634.
    [28] LV J J, LI S S, WANG A J, et al. Monodisperse Au-Pd bimetallic alloyed nanoparticles supported on reduced graphene oxide with enhanced electrocatalytic activity towards oxygen reduction reaction[J]. Electrochimica Acta, 2014, 136:521-528.
    [29] NGUYEN C V, LEE S, CHUNG Y G, et al. Synergistic effect of metal-organic framework-derived boron and nitrogen heteroatom-doped three-dimensional porous carbons for precious-metal-free catalytic reduction of nitroarenes[J]. Applied Catalysic B:Environmental, 2019, 257:117888.
    [30] HIRA S A, ALLAL M, PARK K H. Fabrication of Pd-Ag nanoparticle infused metal-organic framework for electrochemical and solution-chemical reduction and detection of toxic 4-nitrophenol[J]. Sensors and Actuators B:Chemical, 2019, 298:126861.
    [31] BARAN N Y. Palladium nanoparticles decorated on a novel polyazomethine as a highly productive and recyclable catalyst for Suzuki coupling reactions and 4-nitrophenol reduction[J]. Journal of Organometallic Chemistry, 2019, 899:120886.
    [32] WANG Q, XU B, XU C L, et al. Ultrasmall Ni nanoparticles decorated on carbon nanotubes with encapsulated Ni nanoparticles as excellent and pH-universal electrocatalysts for hydrogen evolution reaction[J]. Applied Surface Science, 2019, 495:143569.
    [33] ABDELRAZEK E M, ELASHMAWI I S, EL-KHODARY A, et al. Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide[J]. Current Applied Physics, 2010, 10:607-613.
    [34] GHALEI B, ISFAHANI A P, NILOUYAL S, et al. Effect of polyvinyl alcohol modified silica particles on the physical and gas separation properties of the polyurethane mixed matrix membranes[J]. Silicon Springer Nature, 2019, 11:1451-1460.
    [35] RAO J K, RAIZADA A, GANGULY D, et al. Investigation of structural and electrical properties of novel CuO-PVA nanocomposite films[J]. Journal of Materials Science, 2015, 50:7064-7074.
    [36] REZVANI M A, SHATERIAN M, AKBARZADEH F, et al. Deep oxidative desulfurization of gasoline induced by PMoCu@MgCu2O4-PVA composite as a high-performance heterogeneous nanocatalyst[J]. Chemical Engineering Journal, 2018, 333:537-544.
    [37] WANG N, SI Y, YU J, et al. Nano-fiber/net structured PVA membrane:Effects of formic acid as solvent and crosslinking agent on solution properties and membrane morphological structures[J]. Materials & Design, 2017, 120:135-143.
    [38] JIANG H Y, CHENG H M, BIAN F X. Heterogeneous enantioselective hydrogenation of aromatic ketones catalyzed by Rh nanoparticles immobilized in ionic liquid[J]. Catalysis Letters, 2019, 149:1975-1982.
    [39] CAO M, WANG C Y, XIA R, et al. Preparation and performance of the modified high-strength/high-modulus polyvinyl alcohol fiber/polyurethane grouting materials[J]. Constr Build Materconstruction and Building Materials, 2018, 168:482-489.
    [40] AFSHARI E, MAZINANI S, RANAEI-SIADAT S O, et al. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization[J]. Applied Surface Science, 2016, 385:349-355.
    [41] PENG S J, LIU X L, SUN J, et al. Influence of absorbed moisture on desizing of poly(vinyl alcohol) on cotton fabrics during atmospheric pressure plasma jet treatment[J]. Applied Surface Science, 2010, 256:4103-4108.
  • 加载中
计量
  • 文章访问数:  1472
  • HTML全文浏览数:  1472
  • PDF下载数:  28
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-08

聚乙烯醇海绵负载铑催化剂催化还原对硝基苯酚

    通讯作者: 杨波, E-mail: yb_nuist@163.com
  • 1. 大气环境与装备技术协同创新中心, 江苏省大气环境监测与污染控制高技术研究重点实验室, 南京信息工程大学环境科学与工程学院, 南京, 210044;
  • 2. 南京工业大学环境学院, 南京, 211816
基金项目:

国家自然科学基金(51902166),江苏省自然科学基金(BK20190786),江苏省高等学校自然科研究面上项目(18KJB430019)和南京信息工程大学人才启动经费(2017r073)资助.

摘要: 通过改进的浸渍自组装方法获得了一种聚乙烯醇海绵负载型Rh催化剂.Rh/PVA催化剂在对硝基苯酚的催化还原中表现出优异的催化性能.在注射速度为1.5 mL·min-1时,4-NP的转化率接近100%.由于PVA海绵可以减少RhNPs的浸出和聚集的机会,因此循环进样速度为2.0 mL·min-1时,在8个循环后,Rh/PVA-1的转化率依然维持在89.5%.RhNPs的独特性质以及RhNPs与PVA海绵之间的强相互作用导致了一个高效、可回收且具有成本效益的多功能反应器.最后,Rh/PVA催化剂具有较高的催化效率和良好的可重复使用性,为在废水处理和环境毒理学领域中实现提供了可能.

English Abstract

参考文献 (41)

目录

/

返回文章
返回