金属纳米团簇-二氧化钛纳米管阵列(MNCs-TNTAs)复合材料研究进展
Research progress of metal nanoclusters titanium dioxide nanotube array(MNCs-TNTAs) composites
-
摘要: 一维纳米TiO2材料和同时具有分子特性与部分纳米颗粒特性的金属纳米团簇(NCs)是两种新型纳米材料,近年来受到学界广泛关注,二者在多个领域的应用发展潜力巨大.金属纳米团簇-二氧化钛纳米管阵列材料(MNCs-TNTAs)是一种新型复合材料,通过在二氧化钛纳米管表面上均匀分布金属纳米团簇,使得二者形成协同效应,光电和光催化等活性显著增强.但至今关于此材料还没有系统报道,本文综述了MNCs-TNTAs的材料结构、合成方法及相关应用.MNCs的加入使得TNTA吸收光谱红移,并促进光生载流子的分离,同时MNCs还可充当辅助催化剂.合成关键步骤在于二者的结合,方法有静电自组装法和胶体沉积法,其中胶体沉积法生产的材料更稳定.目前,尚有MNCs-TNTA在光电化学(PEC裂解水)、光催化降解有机污染物、还原硝基化合物等方面的应用.未来可以通过改善结合方法、纳米团簇配体种类等手段提升其稳定性,并拓展其在光催化氧化,太阳能电池等方面的应用.Abstract: One-dimensional titanium dioxide (TiO2) nanomaterial and metal nanoclusters (MNCs) with both molecular and partial nanoparticle properties are two new types of nanomaterials that have recently attracted extensive research attention and promise great potential for applications in diverse fields. As a new family of composite material, MNC-TiO2 nanotube arrays (MNCs-TNTAs) are fabricated by attaching MNCs uniformly onto the surfaces of TiO2 nanotubes and, owing to synergistic effect between the MNCs and TiO2 nanotubes (TNTAs), have exhibited significantly enhanced photoelectricity and photocatalysis. Unfortunately, there is no review on MNCs-TNTAs in the literature so far. Herein, we systematically reviewed the structure, preparation methods, and applications of MNCs-TNTAs. Owing to the presence of MNCs, MNCs-TNTAs exhibited red-shift in absorption and promoted separation of photogenerated carriers as compared to TNTAs. Besides, the MNCs in MNCs-TNTAs could act as an auxiliary catalyst. In the preparation of MNCs-TNTAs, the challenge was how to attach MNCs uniformly onto TNTAs. To this end, proved methods included electrostatic self-assembly and colloidal deposition, and MNCs-TNTAs produced by the latter were more stable. To date, MNCs-TNTAs had been intensively studied for applications, for example, photo-electrochemistry (PEC water splitting), photocatalytic degradation of organic pollutants, and the reduction of nitro compounds. We anticipated that the stability of MNCs-TNTAs may be improved, for example, promoting the binding of MNCs with TNTAs and development in metal cluster ligands and that their applications meight be expanded to photocatalytic oxidation and solar cells.
-
Key words:
- TiO2 nanotube arrays /
- metal nanoclusters /
- composite materials /
- photoelectric catalysis
-
[1] SHUKLA V, RAVAL B, MISHRA S, et al. Role of nanocomposites in future nanoelectronic information storage devices[M]//Nanoelectronics, India:Elsevier, 2019:399-431. [2] ZHAO Q, LI M, CHU J, et al. Preparation, characterization of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange[J]. Applied Surface Science, 2009, 255(6):3773-3778. [3] KONTOS A G, KATSANAKI A, MAGGOS T, et al. Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes[J]. Chemical Physics Letters, 2010, 490:58-62. [4] FU N, LI X, LIU Y, et al. Low Temperature transfer of well-tailored TiO2 nanotube array membrane for efficient plastic dye-sensitized solar cells[J]. Journal of Power Sources, 2017, 343:47-53. [5] PERILLO P M, RODR'GUEZ D F. The gas sensing properties at room temperature of TiO2 nanotubes by anodization[J]. Sensors and Actuators B:Chemical, 2012, 171/172:639-643. [6] SIMI V S, SATISH A, KORRAPATI P S, et al. In-vitro biocompatibility and corrosion resistance of electrochemically assembled PPy/TNTA hybrid material for biomedical applications[J]. Applied Surface Science, 2018, 445:320-334. [7] GUNPUTH U F, LE H, HANDY R D, et al. Anodised TiO2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants[J]. Materials Science and Engineering:C, 2018, 91:638-644. [8] NOORIMOTLAGH Z, KAZEMINEZHAD I, JAAFARZADEH N, et al. Improved performance of immobilized TiO2 under visible light for the commercial Surfactant Degradation:Role of carbon doped TiO2 and anatase/rutile ratio[J]. Catalysis Today, 2020, 348:277-289. [9] BAI B, CHEN Q, ZHAO X, et al. Enhancing electroreduction of CO2 to formate of Pd catalysts loaded on TiO2 nanotubes arrays by N, B-support modification[J]. Chemistry Select, 2019, 4(29):8626-8633. [10] LAI Y K, HUANG J Y, ZHANG H F, et al. Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources[J]. Journal of Hazardous Materials, 2010, 184:855-863. [11] SANG L, GE H, SUN B. Probing plasmonic Ag nanoparticles on TiO2 nanotube arrays electrode for efficient solar water splitting[J]. International Journal of Hydrogen Energy, 2019, 44(30):15787-15794. [12] BANERJEE S, MOHAPATRA S K, DAS P P, et al. Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS[J]. Chemistry of Materials, 2008, 20(21):6784-6791. [13] YANG H, WANG Y, YAN J, et al. Structural evolution of atomically precise thiolated bimetallic[Aun12+Cu32(SR)n30+]4-(n=0, 2, 4, 6) nanoclusters[J]. Journal of the American Chemical Society, 2014, 136(20):7197-7200. [14] NASARUDDIN R R, CHEN T, YAN N, et al. Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters[J]. Coordination Chemistry Reviews, 2018, 368:60-79. [15] XIAO F X, MIAO J, WANG H Y, et al. Self-assembly of hierarchically ordered CdS quantum dots-TiO2 nanotube array heterostructures as efficient visible light photocatalysts for photoredox applications[J]. Journal of Materials Chemistry A, 2013, 1(39):12229-12238. [16] LE L, WU Y, ZHOU Z, et al. Cu2O clusters decorated on flower-like TiO2 nanorod array film for enhanced hydrogen production under solar light irradiation[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2018, 351:78-86. [17] HOSSAIN M F, BISWAS S, ZHANG Z H, et al. Bubble-like CdSe nanoclusters sensitized TiO2 nanotube arrays for improvement in solar cell[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2011, 217(1):68-75. [18] QIAN H, ZHU M, WU Z, et al. Quantum sized gold nanoclusters with atomic precision[J]. Accounts of Chemical Research, 2012, 45(9):1470-1479. [19] HIGAKI T, ZENG C, CHEN Y, et al. Controlling the crystalline phases (FCC, HCP and BCC) of thiolate-protected gold nanoclusters by ligand-based strategies[J]. Cryst Eng Comm, 2016, 18(37):6979-6986. [20] HIGAKI T, ZHOU M, LAMBRIGHT K J, et al. Sharp transition from nonmetallic Au246 to metallic Au279 with nascent surface plasmon resonance[J]. Journal of the American Chemical Society, 2018, 140(17):5691-5695. [21] ROUSSEAU R, GLEZAKOU V A, SELLONI A. Theoretical insights into the surface physics and chemistry of redox-active oxides[J]. Nature Reviews Materials, 2020, 5(6):460-475. [22] KOIVISTO J, SALORINNE K, MUSTALAHTI S, et al. Vibrational perturbations and ligand-layer coupling in a single crystal of Au144(SC2H4Ph) 60 nanocluster[J]. The Journal of Physical Chemistry Letters, 2014, 5(2):387-392. [23] NEGISHI Y, SAKAMOTO C, OHYAMA T, et al. Synthesis and the origin of the stability of thiolate-protected Au130 and Au187 clusters[J]. The Journal of Physical Chemistry Letters, 2012, 3(12):1624-1628. [24] TIAN S, LI Y Z, LI M B, et al. Structural isomerism in gold nanoparticles revealed by X-ray crystallography[J]. Nature Communications, 2015, 6(1):1-7. [25] LIU X, XU W W, HUANG X, et al. De novo design of Au36(SR)24 nanoclusters.[J]. Nature Communications, 2020, 11(1):3349-3349. [26] HIGAKI T, LI Q, ZHOU M, et al. Toward the tailoring chemistry of metal nanoclusters for enhancing functionalities[J]. Accounts of Chemical Research, 2018, 51(11):2764-2773. [27] JIN R. Atomically precise metal nanoclusters:Stable sizes and optical properties[J]. Nanoscale, 2015, 7(5):1549-1565. [28] ZHANG L, WANG E M,etal Nanoclusters:New fluorescent probes for sensors and bioimaging[J]. Nano Today, 2014, 9(1):132-157. [29] PELAYO J J, VALENCIA I, GARC A A P, et al. Chirality in bare and ligand-protected metal nanoclusters[J]. Advances in Physics:X, 2018, 3(1):1509727. [30] FARRAG M, TSCHURL M, HEIZ U. Chiral gold and silver nanoclusters:Preparation, size selection, and chiroptical properties[J]. Chemistry of Materials, 2013, 25(6):862-870. [31] FU X, CHEN B, LI C, et al. Direct visualization of photomorphic reaction dynamics of plasmonic nanoparticles in liquid by four-dimensional electron microscopy[J]. Journal of Physical Chemistry Letters, 2018, 9(14):4045-4052. [32] YAU S H, VARNAVSKI O, GOODSON T. An ultrafast look at Au nanoclusters[J]. Accounts of Chemical Research, 2013, 46(7):1506-1516. [33] YE M, GONG J, LAI Y, et al. High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays[J]. Journal of the American Chemical Society, 2012, 134(38):15720-15723. [34] GE M Z, CAO C Y, HUANG J Y, et al. Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays:A review[J]. Nanotechnology Reviews, 2016, 5(1):75-112 [35] KONDO J N, DOMEN K. Crystallization of mesoporous metal oxides[J]. Chemistry of Materials, 2008, 20(3):835-847. [36] MARIEN C B D, COTTINEAU T, ROBERT D, et al. TiO2 Nanotube Arrays:Influence of tube length on the photocatalytic degradation of paraquat[J]. Applied Catalysis B:Environmental, 2016, 194:1-6. [37] MOR G K, VARGHESE O K, PAULOSE M, et al. Fabrication of tapered, conical-shaped titania nanotubes[J]. Journal of Materials Research, 2003, 18(11):2588-2593. [38] ALSAWAT M, ALTALHI T, SHAPTER J G, et al. Influence of dimensions, inter-distance and crystallinity of titania nanotubes (TNTs) on their photocatalytic activity[J]. Catal Sci Technol, 2014, 4(7):2091-2098. [39] TIAN Z R, VOIGT J A, LIU J, et al. Large oriented arrays and continuous films of TiO2-based nanotubes[J]. Journal of the American Chemical Society, 2003, 125(41):12384-12385. [40] GROSS P A, PRONKIN S N, COTTINEAU T, et al. Effect of deposition of Ag nanoparticles on photoelectrocatalytic activity of vertically aligned TiO2 nanotubes[J]. Catalysis Today, 2012, 189(1):93-100. [41] LI G, JIN R. Atomically precise gold nanoclusters as new model catalysts[J]. Accounts of Chemical Research, 2013, 46(8):1749-1758. [42] CAO M, PANG R, WANG Q Y, et al. Porphyrinic silver cluster assembled material for simultaneous capture and photocatalysis of mustard-gas simulant[J]. Journal of the American Chemical Society, 2019, 141(37):14505-14509. [43] WU T, WEI X, YANG X, et al. Room temperature hydrogen sensitivities of a new type hydrogen sensor with Pd nanoclusters/TiO2 nanotubes composite structure[J]. Scientia Sinica Technologica, 2017, 47(4):418-422. [44] GAO Y, LI X, SHI X, et al. Structural, electronic, and optical absorption properties of TiO2 nanotube adsorbed with Cun clusters[J]. Science China Physics, Mechanics & Astronomy, 2014, 57(8):1519-1525. [45] ZHU B, GUO Q, HUANG X, et al. Characterization and catalytic performance of TiO2 nanotubes-supported gold and copper particles[J]. Journal of Molecular Catalysis A:Chemical, 2006, 249(1/2):211-217. [46] FAN F R, LIU D Y, WU Y F, et al. Epitaxial growth of heterogeneous metal nanocrystals:From gold nano-octahedra to palladium and silver nanocubes[J]. Journal of the American Chemical Society, 2008, 130(22):6949-6950. [47] UDAYA BHASKARA RAO T, PRADEEP T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis[J]. Angewandte Chemie International Edition, 2010, 49(23):3925-3929. [48] WU Z, MACDONALD M A, CHEN J, et al. Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters[J]. Journal of the American Chemical Society, 2011, 133(25):9670-9673. [49] CROISSANT J G, ZHANG D, ALSAIARI S, et al. Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging[J]. Journal of Controlled Release, 2016, 229:183-191. [50] ZENG C, QIAN H, LI T, et al. Total Structure and electronic properties of the gold nanocrystal Au36(SR)24[J]. Angewandte Chemie-International Edition, 2012, 51(52):13114-13118. [51] HIGAKI T, LIU C, ZENG C, et al. Controlling the atomic structure of Au30 nanoclusters by a ligand-based strategy[J]. Angewandte Chemie International Edition, 2016, 55(23):6694-6697. [52] LI G, WANG K, WANG Q, et al. Formation of icosahedral and hcp structures in bimetallic Co-Cu clusters during the freezing processes[J]. Materials Letters, 2012, 88:126-128. [53] QIAN H, ECKENHOFF W T, ZHU Y, et al. Total structure determination of thiolate-protected Au38 nanoparticles[J]. Journal of the American Chemical Society, 2010, 132(24):8280-8281. [54] SHEN X T, MA X L, NI Q L, et al.[Ag15(N-Triphos)4(Cl4)](NO3)3:A stable Ag-P superatom with eight electrons (N-Triphos=tris((diphenylphosphino)methyl)amine[J]. Nanoscale, 2018, 10(2):515-519. [55] LIU C, LI T, LI G, et al. Observation of body-centered cubic gold nanocluster[J]. Angewandte Chemie International Edition, 2015, 54(34):9826-9829. [56] MAITY S, BAIN D, PATRA A. An overview on the current understanding of the photophysical properties of metal nanoclusters and their potential applications[J]. Nanoscale, 2019, 11(47):22685-22723. [57] GOSWAMI N, YAO Q, CHEN T, et al. Mechanistic exploration and controlled synthesis of precise thiolate-gold nanoclusters[J]. Coordination Chemistry Reviews, 2016, 329:1-15. [58] WANG Z, GUPTA R K, LUO G G, et al. Recent progress in inorganic anions templated silver nanoclusters:Synthesis, structures and properties[J]. The Chemical Record, 2019, 20(5):389-402. [59] ZHOU S, LI Y, WANG F, et al. One step synthesis of silane-capped copper clusters as a sensitive optical probe and efficient catalyst for reversible color switching[J]. RSC Advances, 2016, 6(45):38897-38905. [60] DHAYAL R S, VAN ZYL W E, LIU C W. Polyhydrido copper clusters:Synthetic advances, structural diversity, and nanocluster-to-nanoparticle conversion[J]. Accounts of Chemical Research, 2016, 49(1):86-95. [61] HOSSAIN S, NIIHORI Y, NAIR L V, et al. Alloy clusters:Precise synthesis and mixing effects[J]. Accounts of Chemical Research, 2018, 51(12):3114-3124. [62] HOSSAIN S, IMAI Y, NEGISHI Y. Precise synthesis of platinum and alloy clusters and elucidation of their structures[C]//AIP Conference Proceedings. AIP Publishing LLC, 2019:030018. [63] XU C, ZENG Y, RUI X, et al. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance[J]. ACS Nano, 2012, 6(6):4713-4721. [64] FENG J, CHEN Y, HAN Y, et al. pH-regulated synthesis of trypsin-templated copper nanoclusters with blue and yellow fluorescent emission[J]. ACS Omega, 2017, 2(12):9109-9117. [65] YU Y, LUO Z, YU Y, et al. Observation of cluster size growth in CO-directed synthesis of Au25(SR) 18 nanoclusters[J]. ACS Nano, 2012, 6(9):7920-7927. [66] CHEN T, YAO Q, YUAN X, et al. Heating or cooling:Temperature effects on the synthesis of atomically precise gold nanoclusters[J]. The Journal of Physical Chemistry C, 2017, 121(20):10743-10751. [67] NEGISHI Y, IWAI T, IDE M. Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping[J]. Chemical Communications, 2010, 46(26):4713-4715. [68] DOU X, YUAN X, YAO Q, et al. Facile synthesis of water-soluble Au25-x Agx nanoclusters protected by mono-and bi-thiolate ligands[J]. Chemical Communications, 2014, 50(56):7459-7462. [69] OH E, DELEHANTY J B, FIELD L D, et al. Synthesis and characterization of PEGylated luminescent gold nanoclusters doped with silver and other metals[J]. Chemistry of Materials, 2016, 28(23):8676-8688. [70] FU N, DUAN Y, LU W, et al. Synthesis and characterization of PEGylated luminescent gold nanoclusters doped with silver and other metals[J]. Journal of Materials Chemistry A, 2019, 7(18):11520-11529. [71] DHANALAKSHMI L, UDAYABHASKARARAO T, PRADEEP T. Conversion of double layer charge-stabilized Ag@citrate colloids to thiol passivated luminescent quantum clusters[J]. Chemical Communications, 2012, 48(6):859-861. [72] YAO Q, YUAN X, FUNG V, et al. Understanding seed-mediated growth of gold nanoclusters at molecular level[J]. Nature Communications, 2017, 8(1):1-11. [73] YANG S, WANG S, JIN S, et al. A metal exchange method for thiolate-protected tri-metal M1AgxAu24-x(SR)180(M=Cd/Hg) nanoclusters[J]. Nanoscale, 2015, 7(22):10005-10007. [74] WANG S, LI Q, KANG X, et al. Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange[J]. Accounts of Chemical Research, 2018, 51(11):2784-2792. [75] KANG X, ZHU M. Transformation of atomically precise nanoclusters by ligand-exchange[J]. Chemistry of Materials, 2019, 31(24):9939-9969. [76] HEINECKE C L, NI T W, MALOLA S, et al. Structural and theoretical basis for ligand exchange on thiolate monolayer protected gold nanoclusters[J]. Journal of the American Chemical Society, 2012, 134(32):13316-13322. [77] BAGHDASARYAN A. Designed synthesis and surface modification of metal clusters:From fundamentals to applications[D]. Canton Geneva, Switzerland, 2020. [78] KRISHNADAS K R, GHOSH A, BAKSI A, et al. Intercluster Reactions between Au25(SR)18 and Ag44(SR)30[J]. Journal of the American Chemical Society, 2016, 138(1):140-148. [79] KRISHNADAS K R, BAKSI A, GHOSH A, et al. Interparticle reactions:An emerging direction in nanomaterials chemistry[J]. Accounts of Chemical Research, 2017, 50(8):1988-1996. [80] BHAT S, BAKSI A, MUDEDLA S K, et al. Au22Ir3(PET)18:An unusual alloy cluster through intercluster reaction[J]. The Journal of Physical Chemistry Letters, 2017, 8(13):2787-2793. [81] LEE J, HONG S H, JHO J Y. A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method[J]. Sensors and Actuators B:Chemical, 2011, 160(1):1494-1498. [82] BAVYKIN D V, FRIEDRICH J M, WALSH F C. Protonated titanates and TiO2 nanostructured materials:Synthesis, properties, and applications[J]. Advanced Materials, 2006, 18(21):2807-2824. [83] LAI Y, GAO X, ZHUANG H, et al. Designing superhydrophobic porous nanostructures with tunable water adhesion[J]. Advanced Materials, 2009, 21(37):3799-3803. [84] ROY P, DAS C, LEE K, et al. Oxide nanotubes on Ti-Ru alloys:Strongly enhanced and stable photoelectrochemical activity for water splitting[J]. Journal of the American Chemical Society, 2011, 133(15):5629-5631. [85] HUANG J Y, ZHANG K Q, LAI Y K. Fabrication, modification, and emerging applications of TiO2 nanotube arrays by electrochemical synthesis:A review[J]. International Journal of Photoenergy, 2013(1):1-19. [86] QIN G, ZHANG J, WANG C. Constructing robust TiO2-V2O5/C nanostructures decorated by multi-walled carbon nanotubes for high performance lithium ion batteries[J]. Journal of Alloys and Compounds, 2015, 635:158-162. [87] PARAYIL S K, RAZZAQ A, PARK S M, et al. Photocatalytic conversion of CO2 to hydrocarbon fuel using carbon and nitrogen co-doped sodium titanate nanotubes[J]. Applied Catalysis A:General, 2015, 498:205-213. [88] CIRAK B B, KARADENIZ S M, KILINC T, et al. Synthesis, surface properties, crystal structure and dye sensitized solar cell performance of TiO2 nanotube arrays anodized under different voltages[J]. Vacuum, 2017, 144:183-189. [89] SEONG W M, KIM D H, PARK I J, et al. Roughness of Ti substrates for control of the preferred orientation of TiO2 nanotube arrays as a new orientation factor[J]. The Journal of Physical Chemistry C, 2015, 119(23):13297-13305. [90] LI H, LAI Y, HUANG J, et al. Multifunctional wettability patterns prepared by laser processing on superhydrophobic TiO2 nanostructured surfaces[J]. Journal of Materials Chemistry B, 2015, 3(3):342-347. [91] GONG D, GRIMES C A, VARGHESE O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research, 2001, 16(12):3331-3334. [92] GE M Z, LI S H, HUANG J Y, et al. TiO2 nanotube arrays loaded with reduced graphene oxide films:Facile hybridization and promising photocatalytic application[J]. Journal of Materials Chemistry A, 2015, 3(7):3491-3499. [93] YU D, ZHU X, XU Z, et al. Facile method to enhance the adhesion of TiO2 nanotube arrays to Ti substrate[J]. ACS Applied Materials & Interfaces, 2014, 6(11):8001-8005. [94] VARGHESE O K, GONG D, PAULOSE M, et al. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays[J]. Journal of Materials Research, 2003, 18(1):156-165. [95] GHICOV A, TSUCHIYA H, MACAK J M, et al. Titanium oxide nanotubes prepared in phosphate electrolytes[J]. Electrochemistry Communications, 2005, 7(5):505-509. [96] MACAK J M, TSUCHIYA H, SCHMUKI P. High-aspect-ratio TiO2 nanotubes by anodization of titanium[J]. Angewandte Chemie International Edition, 2005, 44(14):2100-2102. [97] ATYAOUI A, CACHET H, SUTTER E M M, et al. Effect of the anodization voltage on the dimensions and photoactivity of titania nanotubes arrays[J]. Surface and Interface Analysis, 2013, 45(11/12):1751-1759. [98] SUN Y, YAN K P. Effect of anodization voltage on performance of TiO2 nanotube arrays for hydrogen generation in a two-compartment photoelectrochemical cell[J]. International Journal of Hydrogen Energy, 2014, 39(22):11368-11375. [99] PERATHONER S, PASSALACQUA R, CENTI G, et al. Photoactive titania nanostructured thin films:Synthesis and characteristics of ordered helical nanocoil array[J]. Catalysis Today, 2007, 122(1/2):3-13. [100] ZHAO J, WANG X, CHEN R, et al. Fabrication of titanium oxide nanotube arrays by anodic oxidation[J]. Solid State Communications, 2005, 134(10):705-710. [101] ALLAM N K, GRIMES C A. Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO2 nanotube arrays[J]. Solar Energy Materials and Solar Cells, 2008, 92(11):1468-1475. [102] MOR G K, SHANKAR K, PAULOSE M, et al. Enhanced photocleavage of water using titania nanotube arrays[J]. Nano letters, 2005, 5(1):191-195. [103] XIAO F X, HUNG S F, MIAO J, et al. Metal-cluster-decorated TiO2 nanotube arrays:A composite heterostructure toward versatile photocatalytic and photoelectrochemical applications[J]. Small, 2015, 11(5):554-567. [104] XIAO F X, ZENG Z, LIU B. Bridging the Gap:Electron relay and plasmonic sensitization of metal nanocrystals for metal clusters[J]. Journal of the American Chemical Society, 2015, 137(33):10735-10744. [105] ZENG Z, LI Y B, CHEN S, et al. Insight into the charge transport correlation in Aux clusters and graphene quantum dots deposited on TiO2 nanotubes for photoelectrochemical oxygen evolution[J]. Journal of Materials Chemistry A, 2018, 6(24):11154-11162. [106] XIAO F X, ZENG Z, HSU S H, et al. Light-induced in situ transformation of metal clusters to metal nanocrystals for photocatalysis[J]. Acs Applied Materials & Interfaces, 2015, 7(51):28105-28109. [107] WANG Y, LIU X, KOVALENKO S A, et al. Atomically precise bimetallic nanoclusters as photosensitizers in photoelectrochemical cells[J]. Chemistry-A European Journal, 2019, 25(18):4814-4820. [108] 刘艳彪. 高效金团簇敏化TiO2纳米管阵列电极光电催化降解抗生素类新兴污染物[C]//2017全国光催化材料及创新应用学术研讨会摘要集,2017. LIU Y B. High-efficiency gold cluster-sensitized TiO2 nanotube array electrode photocatalytically degrades emerging antibiotic pollutants[C]//2017 National Photocatalytic Materials and Innovative Applications Symposium Summary Collection,2017 (in Chinese).
[109] ROGUSKA A, KUDELSKI A, PISAREK M, et al. Raman investigations of SERS activity of Ag nanoclusters on a TiO2-nanotubes/Ti substrate[J]. Vibrational Spectroscopy, 2011, 55(1):38-43. [110] ROGUSKA A, KUDELSKI A, PISAREK M, et al. Surface-enhanced Raman scattering (SERS) activity of Ag, Au and Cu nanoclusters on TiO2-nanotubes/Ti substrate[J]. Applied Surface Science, 2011, 257(19):8182-8189. [111] CHAKRABORTY A, DAS A, RAHA S, et al. Size-Dependent apoptotic activity of gold nanoparticles on osteosarcoma cells correlated with SERS signal[J]. Journal of Photochemistry and Photobiology B:Biology, 2020, 203:111778. [112] SENGUPTA R N, D'APUZZO F, BARCELO S. Bacterial detection via surface-enhanced raman spectroscopy (SERS)[J]. The FASEB Journal, 2020, 34(S1), doi.org/10.1096/fasebj.2020.34.s1.09280. [113] BOTTA R, EIAMCHAI P, HORPRATHUM M, et al. 3D structured laser engraves decorated with gold nanoparticle SERS chips for paraquat herbicide detection in environments[J]. Sensors and Actuators B:Chemical, 2020, 304:127327.
计量
- 文章访问数: 2796
- HTML全文浏览数: 2796
- PDF下载数: 48
- 施引文献: 0