-
随着工业技术的发展,难以生化降解的有机污染物普遍存在于越来越多的工业废水中,且这类废水中含有的有机污染物容易诱发人类产生致癌、致畸、致突变等不利影响,原有常规的物理、化学和生物处理方法效率低,且容易导致二次污染或污染物转移,难以使处理后的废水达到相关法律法规的要求,所以开发新型、高效的废水处理技术已成为环境领域的一个研究热点[1-2]。而光催化降解可很好地克服上述处理方法的缺点,是一种新型、有效的有机废水处理技术。光催化降解技术具有众多优点,如污染物的降解较彻底、消除二次污染、反应速度快、降解能力强、节能高效、成本低廉、符合环保要求,同时能够在温和条件下进行操作,引起了研究人员的广泛兴趣[3-4],已成为近年来处理难降解有机污染物的研究热点,在不同领域有机废水的处理中得到了广泛的应用。其中,光催化剂在降解过程中起核心作用,其催化性能的好坏直接影响到降解处理的效果。目前常用的光催化剂包括TiO2、半导体氧化物、杂多酸(多金属氧酸盐,POM)、CdS、石墨相氮化碳(g-C3N4)和近年兴起的MOF材料等,但各种光催化剂的光响应程度、制备工艺、光稳定性、经济成本等优缺点各不相同。其中POM除了具有其他光催化剂的无二次污染、方便快捷高效等优点外,还具有高富氧表面、强氧化还原能力等一系列优良特性,已经得到了广泛的应用[5-8]。但目前鲜见有关POM光催化效果的综述,为了更好地促进含难降解污染物有机废水的处理,非常有必要对高效的POM光催化剂的性能及应用特点进行综述。
本文对杂多酸光催化剂的种类、杂多酸的改性方法以及杂多酸及其复合物在降解有机污染物中的应用进行了综述,指出了目前杂多酸光催化剂及光催化降解技术存在的突出问题及相应的解决方案,并对其未来的发展方向及应用前景进行了展望。
杂多酸型光催化剂降解有机废水的研究进展
Research progresses on degradation of organic wastewater by polyoxometalate-based photocatalysts
-
摘要: 杂多酸(多金属氧酸盐,POM)是一种环境友好的固体酸,是一种包含有过渡金属(第Ⅴ或第Ⅵ副族)含氧阴离子的多原子阴离子,这些含氧阴离子通过共有的氧原子连接在一起。它除了具有其他光催化剂的无毒、无二次污染、方便快捷高效等优点外,还具有高富氧表面的特性,且由于其结构中存在大量的金属中心而能表现出快速可逆和多电子氧化还原转变,其禁带宽度较窄,且光谱响应范围较宽,有着优异的光催化降解性能,已经在光催化降解含有机污染物废水中得到了广泛的应用。本文对杂多酸光催化剂的种类、杂多酸的改性方法以及杂多酸及其复合物在降解有机污染物中的应用进行了综述,指出了目前杂多酸光催化降解技术存在的突出问题及相应的解决方案,并对其未来的发展方向进行了展望。Abstract: Polyoxometalates (POM), eco-friendly solid acids, are polyatomic anions containing transition metal (group Ⅴ or group Ⅵ) oxyanions linked together through shared oxygen atoms. Except for having advantages of other types of photocatalysts such as non-toxicity, free of secondary pollution, convenient and highly efficient, polyoxometalate (POM) also has such advantages as high oxygen-enriching surface and strong redox ability. In addition, it has narrow energy gap and wide light response range, leading to excellent photocatalytic degradation performance, so it obtains wide applications in degradation of organic pollutants. In this paper, types and modification methods of POM as well as their applications in degradation of organic pollutants were reviewed, and the outstanding problems existing in present photocatalysis degradation technologies by POM and corresponding solutions were raised. In addition, the development trends of POM photocatalysts were prospected.
-
Key words:
- Photocatalysis /
- wastewater /
- degradation /
- catalyst /
- environment /
- polyoxometalate
-
图 4 PW12/Bi2WO6复合光催化剂上电子-空穴对分离示意图及光催化反应机理[44]
Figure 4. Schematic diagram of electron–hole pair separation and the possible photocatalytic reaction mechanism over the PW12/Bi2WO6 composite photocatalyst.
表 1 常见POM的禁带宽度、价导带、吸收边界(V vs.NHE,pH=7)
Table 1. Forbidden band width, valence band, and absorption boundary of common POM (V vs.NHE, pH=7)
常见POM
Common POM禁带宽度
Band gap价带/eV
Valence band/eV导带/eV
Conduction band溶液吸收边界/nm
Solution absorption boundaryH3PW12O40 3.344 3.31 −0.034 372 H3PMo12O40 2.65 2.21 −0.44 468 H4SiW12O40 3.00 2.63 −0.37 430 H5BW12O40 3.46 359 H6CoW12O40 3.34 372 H3AsMo12O40 2.9 428 H3PMo9W3O40 2.73 454 H3PMo6W6O40 2.93 425 H3PMo3W9O40 3.02 411 H3PMo1W11O40 3.1 400 H4PW11V1O40 2.56 485 H5PW10V2O40 2.37 524 H6PW9V3O40 2.32 534 H4PMo11V1O40 2.36 526 H5PMo10V2O40 2.33 532 H6PMo9V3O40 2.31 536 表 2 杂多酸及其复合物在光催化过程中的应用
Table 2. Application of POMs and their composites in photocatalytic processes.
有机污染物
(Organic pollutants)杂多酸或杂多酸复合物
(POM or POM composites)参考文献
(References)包括氢氟酸在内的生物积聚性污染物 H4SiW12O40 [17] 发色团(在纸浆漂白中) H5PMoV2O40 [18] 纺织品染料X3B H3PW12O40,H4SiW12O40,H4GeW12O40,H3PMo12O40 [19] 苯酚 磷钨钒杂多酸盐(MPWV) [20] 罗丹明B K3PW12O40 [21] 碱性红46 磷钼酸铯(Cs3PMo12O40) [22] 酸性红3R(AR3R) (NH4)3PW11O39Sn/TiO2 [23] 亚甲基蓝(MB) H6P2W18O62@Cu3(BTC)2 [26-27] 结晶紫、碱性红2 [Cd(TTPB-4)(DMF)3]4[PMo12O40]2[HP Mo12O40]·6DMF·4H2O [28] 磺胺甲噁唑(新诺明,SMZ) H3PW12O40/Ag-TiO2 [30] 甲基橙 磷钨酸/钇掺杂TiO2(HPW- γ-TiO2) [32] 各种有机染料 H3PW12O40/TiO2 [33] 甲基橙(MO) [(C4H9)4N]5PW11CoO39 (CoW)@TiO2 [34] 甲基橙(MO) PMo12O40(PMo12)/ TiO2/Ag [35] 罗丹明B,亚甲基蓝 介孔SiO2气溶胶/\H3PW12O40 [36] 甲基橙 Zeo-Y/TiO2/Co2+/HPA [37] 亚甲基蓝 H3PMo2W10O40@乙二胺功能化氧化石墨烯(Mo2W10@EDMG)和H3PMo4W8O40@乙二胺功能化氧化石墨烯(Mo4W8@EDMG) [40] 亚甲基蓝(MB)、甲基橙(MO)、罗丹明B(Rh-B)、结晶紫(CV)、溴甲酚绿(BCG)染料、4-硝基苯酚以及2,4-二氯苯氧基乙酸 磷钨酸(PTA)负载的ZrO2 [41] 罗丹明B(RhB) H3PW12O40(PW12)/Bi2WO6 [44] 罗丹明B PW12O403−/Fe3O4 [46] 酸性橙95、酸性红18、直接红81等有机染料 H3PW12O40/(3-氨丙基)三甲氧基硅烷改性钴酸铁 [47] 亚甲基蓝(MB) Fe3O4/Ag/ [Cu(C6H6N2O)2(H2O)]H2[Cu(C6H6N2O)2(P2Mo5O23)]·4H2O [48] -
[1] ABAZARI R, MAHJOUB A R, SHARIATI J, et al. Photocatalytic wastewater purification under visible light irradiation using bismuth molybdate hollow microspheres with high surface area [J]. Journal of Cleaner Production, 2019, 221: 582-586. doi: 10.1016/j.jclepro.2019.03.008 [2] 张治宏, 薛峰. 十一镍锆钼杂多酸盐的合成、表征及超声强化降解染料废水 [J]. 环境化学, 2012, 31(5): 677-681. ZHANG Z H, XUE F. Synthesis, characterization of 11-NiZrMo heteropoly salt and its ultrasonic degradation of dyeing wastewater [J]. Environmental Chemistry, 2012, 31(5): 677-681(in Chinese).
[3] DAI W, JIANG L, WANG J, et al. Efficient and stable photocatalytic degradation of tetracycline wastewater by 3D Polyaniline/Perylene diimide organic heterojunction under visible light irradiation [J]. Chemical Engineering Journal, 2020, 397: 125476. doi: 10.1016/j.cej.2020.125476 [4] WANG W, NIU Q, ZENG G, et al. 1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction [J]. Applied Catalysis B:Environmental, 2020, 273: 119051. doi: 10.1016/j.apcatb.2020.119051 [5] 王敏, 朱左毅, 白爱民, 等. 磷钨酸借自然光催化甲基橙溶液降解脱色的研究 [J]. 化学试剂, 2006, 28(9): 515-517. doi: 10.3969/j.issn.0258-3283.2006.09.002 WANG M, ZHU Z Y, BAI A M, et al. Photocatalytic degradation of the methyl orange solution with phosphotungstic acid under irradiated by sun [J]. Chemical Reagents, 2006, 28(9): 515-517(in Chinese). doi: 10.3969/j.issn.0258-3283.2006.09.002
[6] LEI P, CHEN C, YANG J, et al. Degradation of dye pollutants by immobilized polyoxometalate with H2O2 under visible-light irradiation [J]. Environmental science & technology, 2005, 39(21): 8466-8474. [7] TANG Q, AN X, LAN H, et al. Polyoxometalates/TiO2 photocatalysts with engineered facets for enhanced degradation of bisphenol A through persulfate activation [J]. Chemical Engineering Journal, 2020, 268: 118394. [8] HE R, XUE K, WANG J, et al. Nitrogen-deficient g-C3Nx/POMs porous nanosheets with P-N heterojunctions capable of the efficient photocatalytic degradation of ciprofloxacin [J]. Chemosphere, 2020, 259: 127465. [9] LONG D L, BURKHOLDER E, CRONIN L. Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices [J]. Chemical Society Reviews, 2007, 36(1): 105-121. doi: 10.1039/B502666K [10] PAVITHRA K G, JAIKUMAR V. Removal of colorants from wastewater: A review on sources and treatment strategies [J]. Journal of Industrial and Engineering Chemistry, 2019, 75: 1-19. doi: 10.1016/j.jiec.2019.02.011 [11] RAUF M A, BUKALLAH S B, HAMADI A, et al. The effect of operational parameters on the photoinduced decoloration of dyes using a hybrid catalyst V2O5/TiO2 [J]. Chemical Engineering Journal, 2007, 129(1/3): 167-172. [12] MAHMOODI N M, ARAMI M, LIMAEE N Y, et al. Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor [J]. Journal of Colloid and Interface Science, 2006, 295(1): 159-164. doi: 10.1016/j.jcis.2005.08.007 [13] HAMADI H, KOOTI M, AFSHARI M, et al. Magnetic nanoparticle supported polyoxometalate: An efficient and reusable catalyst for solvent-free synthesis of α-aminophosphonates [J]. Journal of Molecular Catalysis A:Chemical, 2013, 373: 25-29. doi: 10.1016/j.molcata.2013.02.018 [14] STAMATE A E, PAVEL O D, ZAVOIANU R, et al. Highlights on the Catalytic Properties of Polyoxometalate-Intercalated Layered Double Hydroxides: A Review [J]. Catalysts, 2020, 10(1): 57. doi: 10.3390/catal10010057 [15] LI H, GAO S, CAO M, et al. Self-assembly of polyoxometalate–thionine multilayer films on magnetic microspheres as photocatalyst for methyl orange degradation under visible light irradiation [J]. Journal of Colloid and Interface Science, 2013, 394: 434-440. doi: 10.1016/j.jcis.2012.12.005 [16] PATEL A, NARKHEDE N, SINGH S, et al. Keggin-type lacunary and transition metal substituted polyoxometalates as heterogeneous catalysts: A recent progress [J]. Catalysis Reviews, 2016, 58(3): 337-370. doi: 10.1080/01614940.2016.1171606 [17] HORI H, YAMAMOTO A, KOIKE K, et al. Photocatalytic decomposition of a perfluoroether carboxylic acid by tungstic heteropolyacids in water [J]. Applied Catalysis B:Environmental, 2008, 82(1/2): 58-66. [18] QIAN J, WANG K, JIN Y, et al. Polyoxometalate@ magnetic graphene as versatile immobilization matrix of Ru (bpy)32+ for sensitive magneto-controlled electrochemiluminescence sensor and its application in biosensing [J]. Biosensors and Bioelectronics, 2014, 57: 149-156. doi: 10.1016/j.bios.2014.02.005 [19] HU M, XU Y. Photocatalytic degradation of textile dye X3B by heteropolyoxometalate acids [J]. Chemosphere, 2004, 54(3): 431-434. doi: 10.1016/S0045-6535(03)00712-4 [20] JI D, XUE R, ZHOU M, et al. Preparation and photocatalytic performance of tungstovanadophosphoric heteropoly acid salts [J]. RSC Advances, 2019, 9(32): 18320-18325. doi: 10.1039/C9RA00652D [21] CHEN C, WANG Q, LEI P, et al. Photodegradation of dye pollutants catalyzed by porous K3PW12O40 under visible irradiation [J]. Environmental Science & Technology, 2006, 40(12): 3965-3970. [22] GHALEBI H R, ABER S, KARIMI A. Keggin type of cesium phosphomolybdate synthesized via solid-state reaction as an efficient catalyst for the photodegradation of a dye pollutant in aqueous phase [J]. Journal of Molecular Catalysis A:Chemical, 2016, 415: 96-103. doi: 10.1016/j.molcata.2016.01.031 [23] YUE L, ZHANG Y, SUN W, et al. Synthesis of a novel (NH4)3PW11O39Sn/TiO2 heterostructure for efficient photocatalytic degradation and removal of water pollutants [J]. Materials Letters, 2019, 237: 137-140. doi: 10.1016/j.matlet.2018.11.068 [24] WANG Q, LIU E, ZHANG C, et al. Synthesis of Cs3PMo12O40/Bi2O3 composite with highly enhanced photocatalytic activity under visible-light irradiation [J]. Journal of Colloid and Interface Science, 2018, 516: 304-311. doi: 10.1016/j.jcis.2018.01.065 [25] OVEISI M, ASLI M A, MAHMOODI N M. Carbon nanotube based metal-organic framework nanocomposites: Synthesis and their photocatalytic activity for decolorization of colored wastewater [J]. Inorganica Chimica Acta, 2019, 487: 169-176. doi: 10.1016/j.ica.2018.12.021 [26] LIU X, LUO J, ZHU Y, et al. Removal of methylene blue from aqueous solutions by an adsorbent based on metal-organic framework and polyoxometalate [J]. Journal of Alloys and Compounds, 2015, 648: 986-993. doi: 10.1016/j.jallcom.2015.07.065 [27] LIU X, GONG W, LUO J, et al. Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal-organic framework composite [J]. Applied Surface Science, 2016, 362: 517-524. doi: 10.1016/j.apsusc.2015.11.151 [28] LIU M, YANG X F, ZHU H B, et al. A robust polyoxometalate-templated four-fold interpenetrating metal–organic framework showing efficient organic dye photodegradation in various pH aqueous solutions [J]. Dalton Transactions, 2018, 47(15): 5245-5251. doi: 10.1039/C8DT00366A [29] PARK H, CHOI W. Photoelectrochemical investigation on electron transfer mediating behaviors of polyoxometalate in UV-illuminated suspensions of TiO2 and Pt/TiO2 [J]. The Journal of Physical Chemistry B, 2003, 107(16): 3885-3890. doi: 10.1021/jp027732t [30] XU L, WANG G, MA F, et al. Photocatalytic degradation of an aqueous sulfamethoxazole over the metallic silver and Keggin unit codoped titania nanocomposites [J]. Applied Surface Science, 2012, 258(18): 7039-7046. doi: 10.1016/j.apsusc.2012.03.161 [31] JIN H, WU Q, PANG W. Photocatalytic degradation of textile dye X-3B using polyoxometalate–TiO2 hybrid materials [J]. Journal of hazardous materials, 2007, 141(1): 123-127. doi: 10.1016/j.jhazmat.2006.06.098 [32] WANG Y J, LU K C, FENG C G. Photocatalytic degradation of methyl orange by polyoxometalates supported on yttrium-doped TiO2 [J]. Journal of Rare Earths, 2011, 29(9): 866-871. doi: 10.1016/S1002-0721(10)60557-1 [33] YANG Y, WU Q, GUO Y, et al. Efficient degradation of dye pollutants on nanoporous polyoxotungstate–anatase composite under visible-light irradiation [J]. Journal of Molecular Catalysis A:Chemical, 2005, 225(2): 203-212. doi: 10.1016/j.molcata.2004.08.031 [34] RAFIEE E, PAMI N, ZINATIZADEH A A, et al. A new polyoxometalate-TiO2 nanocomposite for efficient visible photodegradation of dye from wastewater, liquorice and yeast extract: Photoelectrochemical, electrochemical, and physical investigations [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2020, 386: 112145. doi: 10.1016/j.jphotochem.2019.112145 [35] SHI H, YU Y, ZHANG Y, et al. Polyoxometalate/TiO2/Ag composite nanofibers with enhanced photocatalytic performance under visible light [J]. Applied Catalysis B:Environmental, 2018, 221: 280-289. doi: 10.1016/j.apcatb.2017.09.027 [36] YAHYA F, EL-RASSY H, YOUNES G, et al. Synthesis and characterisation of mesoporous hybrid silica-polyoxometalate aerogels for photocatalytic degradation of rhodamine B and methylene blue [J]. International Journal of Environmental Analytical Chemistry, 2019, 99(14): 1375-1396. doi: 10.1080/03067319.2019.1622010 [37] DUBEY N, RAYALU S S, LABHSETWAR N K, et al. Photocatalytic properties of zeolite-based materials for the photoreduction of methyl orange [J]. Applied Catalysis A:General, 2006, 303(2): 152-157. doi: 10.1016/j.apcata.2006.01.043 [38] NARDECCHIA S, CARRIAZO D, FERRER M L, et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications [J]. Chemical Society Reviews, 2013, 42(2): 794-830. doi: 10.1039/C2CS35353A [39] YEH T F, SYU J M, CHENG C, et al. Graphite oxide as a photocatalyst for hydrogen production from water [J]. Advanced Functional Materials, 2010, 20(14): 2255-2262. doi: 10.1002/adfm.201000274 [40] FAKHRI H, MAHJOUB A R, AGHAYAN H. Effective removal of methylene blue and cerium by a novel pair set of heteropoly acids based functionalized graphene oxide: Adsorption and photocatalytic study [J]. Chemical Engineering Research and Design, 2017, 120: 303-315. doi: 10.1016/j.cherd.2017.02.030 [41] KOLVARI E, KOUKABI N, HOSSEINI M M, et al. Nano-ZrO2 sulfuric acid: a heterogeneous solid acid nano catalyst for Biginelli reaction under solvent free conditions [J]. RSC Advances, 2016, 6(9): 7419-7425. doi: 10.1039/C5RA19350H [42] SAMPURNAM S, MUTHAMIZH S, DHANASEKARAN T, et al. Synthesis and characterization of Keggin-type polyoxometalate/zirconia nanocomposites—Comparison of its photocatalytic activity towards various organic pollutants [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 370: 26-40. doi: 10.1016/j.jphotochem.2018.10.031 [43] CHEN P, CHEN L, ZENG Y, et al. Three-dimension hierarchical heterostructure of CdWO4 microrods decorated with Bi2WO6 nanoplates for high-selectivity photocatalytic benzene hydroxylation to phenol [J]. Applied Catalysis B:Environmental, 2018, 234: 311-317. doi: 10.1016/j.apcatb.2018.04.028 [44] LIU G, ZHANG Y, XU L, et al. A PW12/Bi2WO6 composite photocatalyst for enhanced visible light photocatalytic degradation of organic dye pollutants [J]. New Journal of Chemistry, 2019, 43(8): 3469-3475. doi: 10.1039/C8NJ05862H [45] KIM S, PARK H, CHOI W. Comparative study of homogeneous and heterogeneous photocatalytic redox reactions: PW12O403− vs TiO2 [J]. The Journal of Physical Chemistry B, 2004, 108(20): 6402-6411. doi: 10.1021/jp049789g [46] SHI Y L, QIU W, ZHENG Y. Synthesis and characterization of a POM-based nanocomposite as a novel magnetic photocatalyst [J]. Journal of Physics and Chemistry of Solids, 2006, 67(11): 2409-2418. doi: 10.1016/j.jpcs.2006.06.021 [47] MAHMOODI N M, REZVANI M A, OVEISI M, et al. Immobilized polyoxometalate onto the modified magnetic nanoparticle as a photocatalyst for dye degradation [J]. Materials Research Bulletin, 2016, 84: 422-428. doi: 10.1016/j.materresbull.2016.08.042 [48] ZHAN S, LI C, TIAN H, et al. Synthesis, Characterization and dye removal behavior of core–shell–shell Fe3O4/Ag/polyoxometalates ternary nanocomposites [J]. Nanomaterials, 2019, 9(9): 1255. doi: 10.3390/nano9091255