-
地下水是地球宝贵的资源,是重要的生态环境因子和不可忽视的致灾因子[1-2]。地下水水文地球化学特征的变化往往会影响生态环境及人类社会的发展。因此,研究地下水的水文地球化学特征及其演化机理,对地下水资源的开发利用和保护具有重要作用。刘江涛等对沁河冲洪积扇地下水水化学特征进行研究,发现其主要离子的形成受到碳酸盐矿物的溶解、离子交换和蒸发等的共同影响[3]。魏兴等研究了喀什三角洲地区的地下水水化学特征,结果表明浅层地下水主要受蒸发作用的影响,而承压水受到反向阳离子交换和蒸发浓缩作用的共同影响[4]。Chen等研究了吐鲁番盆地地下水水文地球化学特征,结果表明水文地球化学特征受到碳酸钙沉淀、蒸发浓缩、离子交换以及蒸发岩盐的溶解作用的影响,同时,灌溉影响下的碳酸盐岩的溶解对研究区地下水的盐渍化起着重要作用[5]。
滹沱河流域是石家庄的重要水源地,约80%的生活用水及工农业用水均来自于地下水[6]。同时,滹沱河流域又是南水北调工程河北段的重要承接区之一,因此,其地下水水质的好坏直接影响该地区居民的饮水安全。近年来,随着社会经济的快速发展和城市化进程的日益加快,人类活动对研究区地下水影响程度逐年加强,已经对该地区地下水水质造成影响。先前研究主要关注该地区水质污染状况及评价[7-10]、地球化学模拟[11-12]等方面。
本文针对滹沱河流域浅层地下水水化学演化机理开展研究,结合历史水化学资料,运用piper三线图、Gibbs图和离子比例系数法等水化学方法,对该区域水化学类型及其形成演化机制进行分析讨论,有助于了解该区域地下水的形成过程,同时对该区域地下水环境的评价及合理开发利用提供科学依据。
滹沱河流域地下水水化学特征演化及成因分析
Evolution of groundwater hydrochemical characteristics and origin analysis in Hutuo River Basin
-
摘要: 为研究滹沱河流域地下水的水化学特征及其演化规律,2018年1月(枯水期)和9月(丰水期)分别采集该地区地下水样品33组,运用Piper三线图、Gibbs图以及离子比例系数法,全面分析了研究区地下水的时空动态变化、水化学特征及其演化过程。结果表明,研究区地下水主要的污染因子是TH和NO3-,其超标率高达69.7%和36.4%,水化学指标的空间变化主要受到人类活动、地下水埋深和地层岩性的控制,其浓度表现为岗南水库-黄壁庄水库间沟谷地带大于冲洪积扇地区;水化学指标的时间变化主要受到季风气候(降雨)的影响,水化学参数的浓度表现为枯水期要高于丰水期。岗南水库-黄壁庄水库间沟谷地带水化学类型以HCO3·SO4-Ca型水和HCO3·Cl-Ca型水为主,滹沱河冲洪积扇地下水水化学类型以HCO3·SO4-Ca(Mg)型为主。该地区地下水水化学形成主要以岩土风化-溶滤作用为主,同时受蒸发浓缩作用的影响。地下水中的化学组分主要来源于岩盐溶解和大气降水,同时,离子交换作用也有一定的贡献。Abstract: To investigate the hydrochemical characteristics and evolution of groundwater in Hutuo River Basin, 33 groups of groundwater samples were collected in January (low flow period) and September (high flow period) in 2018. The spatio-temporal dynamic changes, hydrochemical characteristics and evolution processes of groundwater in the study area were comprehensively analyzed by using Piper trilinear diagram, Gibbs diagram and ion proportion coefficient method. The results show that the main pollution factors of groundwater are TH and NO
$_3^ - $ , and the over standard rates are as high as 69.7% and 36.4%, respectively. The spatial variation of hydrochemical indexes is prinarily controlled by the human activities, the depth of groundwater and the stratum lithology. The main ion concentration in the valley zone between Gangnan and Huangbizhuang Reservoir is higher than that of the alluvial-proluvial fan area. The temporal variation of hydrochemical indexes is mainly affected by monsoon climate (precipitation), characterized by a higher concentration in the dry season. The hydrochemical types of the valley area between Gangnan and Huangbizhuang Reservoir are mainly HCO3·SO4-Ca and HCO3·Cl-Ca type water, while the hydrochemical type of groundwater in the Hutuo River alluvial-proluvial fan is dominated by HCO3·SO4-Ca(Mg) type. The hydrochemical evolution of groundwater in this area is principally controlled by rock weathering-dissolution, and it is also affected by evaporation-concentration process. The chemical components of groundwater mainly originated from the dissolution of halite and atmospheric precipitation, which is also influenced by the ion exchange process.-
Key words:
- Hutuo River Basin /
- hydrochemical characteristic /
- groundwater /
- evolution law
-
图 5 滹沱河流域地下水Na+和Cl−(a)和研究区地下水Ca2+和Mg2+(b)、 (Ca2++Mg2+)与(HCO
$_3^ - $ +SO$_4^{2 - } $ )(c)、 (Ca2++Mg2+-HCO$_3^ - $ -SO$_4^{2 - } $ )与(Na+-Cl−)(d)关系图Figure 5. Relationship between Na+ and Cl− (a) of groundwater in Hutuo River Basin and Ca2+/Mg2+ (b) ,(Ca2++Mg2+)/(HCO
$_3^ - $ +SO$_4^{2 - } $ ) (c),(Ca2++Mg2+-HCO$_3^ - $ -SO$_4^{2 - } $ )/(Na+-Cl−)(d)of groundwater in the study area表 1 研究区样品水质指标统计表
Table 1. Statistics of hydrochemical parameters of the study area
参数
Parameters范围/ (mg·L−1) Range 均值/ (mg·L−1) Mean 超标率/%
Over standard rate国标Ⅲ类*
Standard2018.1 2018.9 2018.1 2018.9 pH 7.10—7.94 6.71—7.41 7.43 7.14 0 6.50—8.50 K+ 0.3—24.3 0.6—8.0 3.1 2.1 — — Na+ 9.1—169.7 5.7—110.8 45.5 30.6 0 200 Ca2+ 20.9—359.8 37.4—288.9 168.8 147.8 — — Mg2+ 6.0—108.4 11.4—57.7 38.5 31.6 — — Cl− 2.5—385.9 17.3—179.0 96.5 73.9 3.0 250 SO $_4^ {2-} $ 5.4—402.2 20.3—253.9 172.8 143.8 12.1 250 HCO $_3^ - $ 147.0—462.1 98.1—475.6 310.0 290.4 — — NO $_3^ - $ 1.6—509.0 5.0—326.2 115.6 82.0 36.4 88.6 TH 77.1—1345.0 140.2—833.3 580.2 499.2 69.7 450 TDS 158.7—2134.0 171.8—1061.2 815.6 657.3 15.2 1000 *为地下水质量标准(GB/T 14848-2017)中三类水标准. -
[1] 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 第六版. 北京: 地质出版社, 2011. ZHANG R Q, LIANG X, JIN M G, et al. Fundamentals of hydrogeology[M]. 6th Edition. Beijing: Geological Publishing House, 2011(in Chinese).
[2] MA B, JIN M G, LIANG X, et al. Groundwater mixing and mineralization processes in a mountain–oasis–desert basin, northwest China: Hydrogeochemistry and environmental tracer indicators [J]. Hydrogeology Journal, 2018, 26(D22): 233-250. [3] 刘江涛, 蔡五田, 曹月婷, 等. 沁河冲洪积扇地下水水化学特征及成因分析 [J]. 环境科学, 2018, 39(12): 142-153. LIU J T, CAI W T, CAO Y T, et al. Hydrochemical characteristics of groundwater and the origin in alluvial-proluvial fan of Qinhe River [J]. Environmental Science, 2018, 39(12): 142-153(in Chinese).
[4] 魏兴, 周金龙, 乃尉华, 等. 新疆喀什三角洲地下水化学特征及演化规律 [J]. 环境科学, 2019, 40(9): 4042-4051. WEI X, ZHOU J L, NAI W H, et al. Hydrochemical characteristics and evolution of groundwater in the Kashgar Delta area in Xinjiang [J]. Environmental Science, 2019, 40(9): 4042-4051(in Chinese).
[5] CHEN L, WANG G C, HU F S, et al. Groundwater hydrochemistry and isotope geochemistry in the Turpan Basin, northwestern China [J]. Journal of Arid Land, 2014, 6(4): 378-388. doi: 10.1007/s40333-013-0249-9 [6] 李亚松, 张兆吉, 费宇红, 等. 滹沱河冲积平原浅层地下水有机污染研究 [J]. 干旱区资源与环境, 2012, 26(8): 52-56. LI Y S, ZHANG Z J, FEI Y H, et al. Preliminary study on organic pollution of shallow groundwater in the alluvial plain of Hutuo River [J]. Journal of Arid Land Resources and Environment, 2012, 26(8): 52-56(in Chinese).
[7] 李亚松, 张兆吉, 费宇红, 等. 地下水质量综合评价方法优选与分析——以滹沱河冲洪积扇为例 [J]. 水文地质工程地质, 2011, 38(1): 6-10. doi: 10.3969/j.issn.1000-3665.2011.01.002 LI Y S, ZHANG Z J, FEI Y H, et al. Optimal selection and analysis of groundwater quality evaluation methods: A case study in the Hutuo River alluvial pluvial fan [J]. Hydrogeology& Engineering Geology, 2011, 38(1): 6-10(in Chinese). doi: 10.3969/j.issn.1000-3665.2011.01.002
[8] 昌盛, 耿梦娇, 刘琰, 等. 滹沱河冲洪积扇地下水中多环芳烃的污染特征 [J]. 中国环境科学, 2016, 36(7): 2058-2066. doi: 10.3969/j.issn.1000-6923.2016.07.022 CHANG S, GENG M J, LIU Y, et al. Pollution characteristic of polycyclic aromatic hydrocarbons in the groundwater of Hutuo River Pluvial Fan [J]. China Environmental Science, 2016, 36(7): 2058-2066(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.07.022
[9] 李亚松, 张兆吉, 费宇红, 等. 河北省滹沱河冲积平原地下水质量及污染特征研究 [J]. 地球学报, 2014, 35(2): 169-176. doi: 10.3975/cagsb.2014.02.07 LI Y S, ZHANG Z J, FEI Y H, et al. Groundwater quality and contamination characteristics in the Hutuo River Plain area, Hebei Province [J]. Acta Geoscientica Sinica, 2014, 35(2): 169-176(in Chinese). doi: 10.3975/cagsb.2014.02.07
[10] LI Y S, ZHANG Z J, FEI Y H, et al. Investigation of quality and pollution characteristics of groundwater in the Hutuo River Alluvial Plain, North China Plain [J]. Environmental Earth Sciences, 2016, 75(7): 581. doi: 10.1007/s12665-016-5366-2 [11] 张翠云, 刘文生. 河北平源浅层地下水地球化学演化模拟 [J]. 地学前缘, 1996, 3(1/2): 245-248. ZHANG C Y, LIU W S. Geochemical evolution simulation of shallow groundwater in Hebei Plain [J]. Earth Science Frontiers, 1996, 3(1/2): 245-248(in Chinese).
[12] ZHANG X W, HE J T, HE B N, et al. Assessment, formation mechanism, and different source contributions of dissolved salt pollution in the shallow groundwater of Hutuo River alluvial-pluvial fan in the North China Plain [J]. Environmental Science and Pollution Research, 2019, 26(35): 35742-35756. doi: 10.1007/s11356-019-06502-2 [13] ZHANG Q Q, WANG H W, WANG Y C, et al. Groundwater quality assessment and pollution source apportionment in an intensely exploited region of northern China [J]. Environmental Science & Pollution Research International, 2017, 24(20): 16639-16650. [14] 孙厚云, 毛启贵, 卫晓锋, 等. 哈密盆地地下水系统水化学特征及形成演化 [J]. 中国地质, 2018, 45(6): 1128-1141. SUN H Y, MAO Q G, WEI X F, et al. Hydrogeochemical characteristics and formation evolutionary mechanism of the groundwater system in the Hami basin [J]. Geology in China, 2018, 45(6): 1128-1141(in Chinese).
[15] JIA H, QIAN H, ZHENG L, et al. Alterations to groundwater chemistry due to modern water transfer for irrigation over decades [J]. Science of The Total Environment, 2020, 717: 137170. doi: 10.1016/j.scitotenv.2020.137170 [16] 曾渊深. 石家庄供水水文地质勘测报告[R]. 河北省地质局水文地质工程地质大队, 1959. ZENG S Y. The report of hydrogeological investigation for water supply in Shijiazhuang[R]. Hydrogeology and engineering geology team of Hebei geological bureau, 1959(in Chinese).
[17] MARANDI A, SHAND P. Groundwater chemistry and the Gibbs Diagram [J]. Applied Geochemistry, 2018, 29: 209-212. [18] XING L N, GUO H M, ZHAN Y H. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain [J]. Journal of Asian Earth Sciences, 2013, 70-71: 250-264. doi: 10.1016/j.jseaes.2013.03.017 [19] 陈晨, 高宗军, 李伟, 等. 泰莱盆地地下水化学特征及其控制因素 [J]. 环境化学, 2019, 38(6): 1339-1347. doi: 10.7524/j.issn.0254-6108.2018090504 CHEN C, GAO Z J, LI W, et al. Characteristics and possible factors of hydrochemistry in the groundwater in Tailai basin [J]. Environmental Chemistry, 2019, 38(6): 1339-1347(in Chinese). doi: 10.7524/j.issn.0254-6108.2018090504
[20] 张涛, 蔡五田, 李颖智, 等. 尼洋河流域水化学特征及其控制因素 [J]. 环境科学, 2017, 38(11): 4537-4545. ZHANG T, CAI W T, LI Y Z, et al. Major ionic features and their possible controls in the water of the Niyang River Basin [J]. Environmental Science, 2017, 38(11): 4537-4545(in Chinese).
[21] 覃彤, 汤庆佳, 张强, 等. 桂西大型岩溶地下河系统离子来源及碳稳定同位素信息——以坡心地下河流域为例 [J]. 中国地质, 2019, 46(2): 302-315. QIN T, TANG Q J, ZHANG Q, et al. Chemical ions source analysis and stable isotope implications of different water bodies in large karst underground river system: A case study of Poxin groundwater basin in Guangxi [J]. Geology in China, 2019, 46(2): 302-315(in Chinese).
[22] MAYO A L, LOUCKS M D. Solute and isotopic geochemistry and ground water flow in the central Wasatch Range, Utah [J]. Journal of Hydrology, 1995, 172(1-4): 31-59. doi: 10.1016/0022-1694(95)02748-E [23] ABDELKADER R, LARBI D, RIHAB H, et al. Geochemical characterization of groundwater from shallow aquifer surrounding Fetzara Lake N. E. Algeria [J]. Arabian Journal of Geosciences, 2012, 5(1): 1-13. doi: 10.1007/s12517-010-0202-6