-
从2004年“微塑料”被首次定义(小于5 mm的塑料颗粒)以来[1],有关微塑料的话题便逐步受到各国政府和学者的关注。微塑料污染普遍存在于淡水和海洋生态系统中,近年来研究人员在全球各个湖泊、河流、大洋、大洲、甚至极地地区都检测到了微塑料的存在[2-7]。据估计,每年约有800多万吨塑料残骸被排放到全球海洋环境中,这些塑料垃圾包括大块的塑料残骸以及直接排入环境的微塑料颗粒(比如化妆品中的塑料微珠)[8-9]。大塑料残骸作为微塑料的前驱体,在自然环境中经过长期的物理化学作用,也将逐渐形成微塑料颗粒。
微塑料被认为是水体环境污染物的重要组成部分[10],尽管其环境丰度与其它水体介质(如纤维素、溶解性有机质等)相比较小,但其对生物体可能产生的潜在风险却不容小觑。一则,微塑料粒径较小而易被生物摄入并在生物体内累积,对生物造成机械损伤或影响其生长发育,甚至造成死亡[11-14]。二则,微塑料可以吸附环境中的污染物质(特别是疏水性有机污染物)或自身携带添加剂,这些污染物在脱附作用下,会在生物体内累积、迁移和转化,并对生物产生毒性效应[15-18]。因此,研究微塑料与有机污染物的相互作用的强度和机理,对全面评估二者的环境风险,深入探索微塑料致毒机制十分重要。
由于微塑料本身的聚合物类型、粒径、比表面积和老化等情况复杂多样,水体环境中的有机污染物也具有不同的理化性质,这就导致两者之间的吸附作用机理复杂,并可能受到多种环境因素的影响。本文将从微塑料的基本特性、吸附有机污染物的作用机理、环境因素的影响以及吸附行为对有机污染物生物有效性的影响等方面展开详细阐述,并提出有机污染物在微塑料上吸附研究的未来发展方向。
微塑料吸附有机污染物的研究进展
Research progress on sorption of organic pollutants by microplastics
-
摘要: 微塑料作为一种新型环境污染物在全球环境介质中普遍存在,其存在可能会影响传统有机污染物的分布、迁移和环境归趋。微塑料本身具有强疏水特性和较大的比表面积,使其能够有效地吸附有机污染物并将其输送到生物体内,从而改变微塑料潜在的环境风险。微塑料与有机污染物之间的相互作用机制主要受二者自身的理化性质,及溶液pH、温度、盐度、溶解性有机质和老化作用等环境因素的影响。本文从微塑料的基本特性、与有机污染物的作用机制、环境影响因素,以及二者复合对有机污染物生物有效性的影响等方面进行了综述,并提出微塑料与有机污染物相互作用研究中亟需解决的问题和未来的研究方向。Abstract: As a new type of environmental pollutant, microplastics are ubiquitous in global environmental media. Their presence can change the distribution, transportation and environmental fate of traditional organic pollutants. Microplastics have strong hydrophobic properties and large specific surface areas, which enables them to effectively sorb organic pollutants and later transport into organisms, thereby altering the potential environmental risks of both microplastics and the associated organic pollutants. The interaction mechanisms between microplastics and organic pollutants are mainly affected by their physical and chemical properties, as well as environmental influential factors such as pH, temperature, salinity, dissolved organic matter, and aging time. This paper reviews the basic characteristics of microplastics, the interaction mechanisms between microplastics and organic pollutants, effects of environmental influential factors, and the bioavailability of organic pollutants with the presence of microplastics, and finally puts forward the issues related to the interactions between microplastics and organic pollutants that needed for future studies.
-
Key words:
- microplastics /
- sorption /
- organic pollutants /
- interaction mechanism
-
表 1 几种常见塑料的理化特性
Table 1. The physical and chemical properties of several common plastics
塑料类型
Plastic type密度/ (g·cm−3)
Density接触角/(°)
Contact angle结晶度/%
Crystallinity玻璃化转变温度/℃
Glass transition temperature(N+O)/C
原子比
Atomic ratioH/C
原子比
Atomic ratio低密度聚乙烯
(LDPE)0.91—0.93 95.6±3.2[26] 55—65 −125 — 2.0 高密度聚乙烯(HDPE) 0.92—0.97 85.8±3.8[26] 80—95 −125 — 2.0 聚丙烯(PP) 0.90—0.91 106.3±2.3[26] 38.4 −10 — 2.0 聚苯乙烯(PS) 1.04—1.07 95.7±1.4[26] 3.7 100 0.02 1.0 聚碳酸酯(PC) 1.20 74.4±2.0[26] 16.2 145—150 0.13 1.1 聚酰胺(PA) 1.04—1.14 70.9±6.6[26] 30—40 55 0.33 1.8 聚氯乙烯(PVC) 1.35—1.45 73.32[27] 5—10 75—85 — 1.50 聚甲基丙烯酸甲酯(PMMA) 1.17—1.20 80.1±1.9[26] 6.1 104 0.40 1.60 聚对苯二甲酸乙二醇酯(PET) 1.37—1.38 74.03[27] 0.5 80—120 0.40 0.80 聚氨酯(PU) 1.045 96±2.2[28] — −17.1 0.384 2.01 聚丁二酸丁二醇酯(PBS) 1.26 119.4[29] 30—45 −33.8 0.444 1.75 注:表中数据来自PubChem数据库、摩贝化学平台、《高分子材料概论》及标注的文献.
Note: The data in the table are taken from PubChem database, Mobei chemistry platform, Introduction to Polymer Materials Book, and annotated literature.表 2 不同环境因子对有机污染物在微塑料上的吸附的影响及作用机理
Table 2. The effects and mechanisms of different environmental factors on the sorption of organic pollutants on microplastics
环境
因子
Environmental factors微塑料
Microplastics有机污染物
Organic pollutants主要吸附
机理
Main sorption mechanism影响结果
Results类型(粒径)
Type( Particle size)类型(浓度)
Type(Concentration)pH PE (150 μm)
PS (250 µm)
PVC (230 μm)PFOS、FOSA
(5—50 µg·L−1)
分配作用pH:3.0—7.0,PFOS的吸附量随pH下降逐渐上升,对FOSA无影响[51] PE (150 μm) SMX(0.2—5 mg·L−1) 分配作用
范德华力pH:2.0—12.0,pH对吸附无明显
影响[71]PE (150 μm)
PP、PS (<280 mm)TC(0.2—5 mg·L−1) 静电作用 pH:2.0—12.0,吸附量先上升后下降,6.0时达到峰值[52] PE、PP、PS、PVC
(<75 μm)TYL (1—30 mg·L−1) 静电作用
疏水作用pH:3.0—7.0,吸附量随pH升高逐渐下降[50] PS (2、10、100 μm) HEX、MYC、TRI
(100 µg·L−1)静电作用
疏水作用pH:3.0—11.0,吸附量随pH升高逐渐上升[70] PE、PP、PS、PC、PMMA、PA、PVC
(>250 μm或<75 μm)E2 (500 ng·L−1—
500 µg·L−1)疏水作用 吸附量与微塑料的疏水性呈正相
关[26]PE、PS、PVC
(<75 μm)DEP、DBP
(0.4—10 mg·L−1)疏水作用 pH:5.5—8.5,pH对吸附无明显
影响[82]PE、PET、PS、PP、PA、PVC、PU、PMMA (NA) BPA (100 µg·L−1) 静电作用 pH:2.8—11.0,吸附量随pH升高逐渐上升[55] PE、PVC
(200—250 μm)DDT、PHE、DEHP
(0.6—6.1 µg·L−1)疏水作用 pH:7.5—8.4,吸附量随pH升高逐渐
上升[68]PE、PP、PS、PA
(4 mm)PBDEs
(0.2—1 µg·L−1)静电作用 pH:1.0—13.0,pH对吸附无明显
影响[72]PE、PP、PET、PS、PVC、PA
(100—150 μm)SMX (0—12 mg·L−1) 静电作用 pH:3.0—9.0,吸附量随pH升高逐渐下降[69] 温度 PE、PVC (≤0.15 mm) SM (1 mg·L−1) 疏水作用 温度:5—30 ℃,吸附量随温度的升高先下降后上升再下降[11] PS (75.4—214.6 μm) TCS (1—12 mg·L−1) 疏水作用
静电作用温度:15—45 ℃,温度对吸附无明显影响影响[65] PE、PVC (200—250 μm) DDT、PHE、DEHP
(0.6—6.1 µg·L−1)疏水作用 温度:18—38 ℃,高温条件抑制吸附[68] PP (0.45—0.85 mm) SM (5 µg·L−1) 范德华力 温度:5—30 ℃,高温条件抑制吸
附[64]PP (0.18—5.0 mm) PCB (0.2 mg·L−1) 离子交换 温度:4—32 ℃,高温条件抑制吸
附[41]PP (0.45—0.85 mm) TBC (10 µg·L−1)
HBCDs (2 µg·L−1)离子交换 温度:5—45 ℃,随温度升高,吸附量先上升后下降[83] 盐度 PE、PP、PS、PA、PVC
(75—180 µm)SDZ、AMX、TC、CIP、TMP
(0.5—15 mg·L−1)静电作用
疏水作用
范德华力
氢键高离子强度抑制吸附[36] PE (150 μm)、
PP、PS (<280 mm)TC (0.2—5.0 mg·L−1) 静电作用 盐度:0.05%—3.5%,盐度对吸附无明显影响[52] PS (2、10、100 μm) HEX、MYC、TRI
(100 µg·L−1)静电作用
疏水作用盐度:0—50 mmol·L−1,高盐度促进吸附[70] PE、PP、PS、PVC
(<75 μm)TYL (1—30 mg·L−1) 静电作用
疏水作用盐度:0—0.1 mol·L−1,随着盐度升高,吸附量先上升后下降[50] PS (75.4—214.6 μm) TCS (1—12 mg·L−1) 静电作用
疏水作用盐度:0.001 mol·L−1—0.1 mol·L−1,盐度对吸附无明显影响[65] 盐度 PE、PVC (≤0.15 mm) SM (1 mg·L−1) 疏水作用 盐度:1%—21%,随着盐度升高,吸附量先上升后下降再上升[11] PE、PP、PS、PC、PMMA、
PA、PVC (>250 μm、<75 μm)E2 (500 ng·L−1—500 µg·L−1) 疏水作用 盐度:0.05%—3.5%,高盐度促进吸附[26] PE、PS、PVC
(<75 μm)DEP、DBP
(0.4—10 mg·L−1)疏水作用 盐度:0—0.3 mol·L−1,高盐度促进吸附[82] PE (150 μm)、
PS (250 μm)、
PVC (230 μm)PFOS、FOSA
(5—50 µg·L−1)疏水作用 盐度:0—1 mol·L−1,高盐度促进对PFOS的吸附,对FOSA无影响[51] PP (0.45—
0.85 mm)SM (5 µg·L−1) 离子交换 盐度:1%—21%,盐度对吸附无明显影响[64] PE、PP、PS、PA
(4 mm)PBDEs
(0.2—1 µg·L−1)静电作用 盐度:0—3.5%,盐度对吸附无明显影响[72] PEc (2.0—3.3 mm)、PEv
(400 µm)、PS (250 μm)、
PBAT (1.9—2.8 μm)PHE(178.4—
623.7 µg·L−1)疏水作用 盐度:0—35‰,高盐度促进吸
附[67]PE (150 μm) SMX (0.2—5 mg·L−1) 分配作用
范德华力盐度:0.05%—3.5%,盐度对吸附无明显影响[71] PE、PET、PS、PP、PA、PVC、PU、PMMA (NA) BPA (10 µg·L−1) 氢键 盐度:12‰—35‰,高盐度促进吸附[55] PE、PP、PET、PA、PET、PVC
(100—150 μm)SMX (0—12 mg·L−1) 静电作用 盐度:0—35‰,高盐度抑制吸
附[69]PP (0.45—0.85 mm) TBC (10 µg·L−1)
HBCDs (2 µg·L−1)离子交换 盐度:0—24.5%,随盐度升高,吸附量先上升后下降[83] 溶解性有机质(DOM) PE、PP、PS、PC、PMMA、PA、PVC
(>250 μm或<75 μm)E2 (500 ng·L−1—500 µg·L−1) 疏水作用 高DOM含量抑制吸附[26] PE (150 μm)、
PP、PS (<280 mm)TC (0.2—5 mg·L−1) 疏水作用
静电作用DOM抑制吸附[52] PE、PS、PVC
(<75 μm)DEP、DBP
(0.4—10 mg·L−1)疏水作用 DOM对吸附无显著影响[82] PEc (2.0—3.3 mm)、PEv
(400 μm)、PS (250 μm)、
PBAT (1.9—2.8 μm)PHE(178.4—
623.7 µg·L−1)疏水作用 高DOM含量抑制吸附[67] PE (150 μm) SMX(0.2—5 mg·L−1) 分配作用
范德华力DOM对吸附无显著影响[71] PE、PET、PS、PP、PA、PVC、PU、PMMA (NA) BPA
(100—200 µg·L−1)静电作用 BPA/DOM复合物的形成促进BPA的溶解,吸附能力降低[55] PE、PP、PS、PA (4 mm) PBDEs(0.2—1 µg·L−1) 静电作用 DOM对吸附有轻微抑制[72] PE (250—280 μm) EE2、TCS(100 µg·L−1) 疏水作用 DOM抑制吸附[66] 注:表格中的缩写:PE:聚乙烯;PP:聚丙烯;PS:聚苯乙烯; PVC:聚氯乙烯; PA:聚酰胺; PU:聚氨酯; PET:聚对苯二甲酸乙二醇酯; PMMA:聚甲基丙烯酸甲酯; PBAT:对苯二甲酸丁二酯; PEc:可降解聚乙烯; PEv:聚乙烯粉; DOM:溶解性有机质; TC:四环素; TYL:泰乐菌素; HEX:乙唑醇; MYC:腈菌唑; TRI:三唑醇; E2:17β-雌二醇; PFOS:全氟辛烷磺酸盐; FOSA:全氟辛烷磺酰胺; DEP:邻苯二甲酸二乙酯; DBP:邻苯二甲酸二丁酯; BPA:双酚A; DDT:有机氯农药; PHE:菲; DEHP:邻苯二甲酸酯; PBDEs:多溴联苯醚; SMX: 磺胺甲噁唑; SM:合成麝香; TCS:三氯生; PCB:多氯联苯; TBC:三(2,3-二溴丙基)异氰脲酸盐; HBCDs:六溴环十二烷; SDZ:磺胺嘧啶; AMX:阿莫西林; CIP:环丙沙星; TMP:甲氧苄啶; EE2:17α-乙炔雌二醇;NA:无法获得.
Note:Abbreviations in the table: PE: polyethylene; PP: polypropylene; PS: polystyrene; PVC: polyvinyl chloride; PA: polyamide; PU: polyurethane; PET: polyethylene terephthalate; PMMA: Polymethyl methacrylate; PBAT: Butylene terephthalate; PEc: degradable polyethylene; PEv: polyethylene powder; DOM: soluble organic matter; TC: tetracycline; TYL: tylosin; HEX: B Conazole; MYC: Myclobutanol; TRI: Triadimenol; E2: 17β-estradiol; PFOS: Perfluorooctane Sulfonate; FOSA: Perfluorooctane Sulfonamide; DEP: Diethyl Phthalate Esters; DBP: dibutyl phthalate; BPA: bisphenol A; DDT: organochlorine pesticides; PHE: phenanthrene; DEHP: phthalates; PBDEs: polybrominated diphenyl ethers; SMX: sulfamethoxazole; SM : Synthetic musk; TCS: triclosan; PCB: polychlorinated biphenyls; TBC: tris(2,3-dibromopropyl) isocyanurate; HBCDs: hexabromocyclododecane; SDZ: sulfadiazine; AMX: Amoxicillin; CIP: Ciprofloxacin; TMP: Trimethoprim; EE2: 17α-ethinyl estradiol; NA: not available. -
[1] RICHARD C T, YLVA O, RICHARD P M, et al. Lost at sea: Where is all the plastic? [J]. Science, 2004, 304: 838. doi: 10.1126/science.1094559 [2] YU Q, HU X J, YANG B, et al. Distribution, abundance and risks of microplastics in the environment [J]. Chemosphere, 2020, 249: 126059. doi: 10.1016/j.chemosphere.2020.126059 [3] AUTA H S, EMENIKE C U, FAUZIAH S H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions [J]. Environment International, 2017, 102: 165-176. doi: 10.1016/j.envint.2017.02.013 [4] CHEN Q Q, REISSER J, CUNSOLO S, et al. Pollutants in plastics within the North Pacific Subtropical Gyre [J]. Environmental Science & Technology, 2017, 52(2): 446-456. [5] LEBRETON L, SLAT B, FERRARI F F, et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic [J]. Scientific Reports, 2018, 8(1): 4666. doi: 10.1038/s41598-018-22939-w [6] BERGMANN M, SOPHIA M, PRIMPKE S, et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic [J]. Science Advances, 2019, 5: 1157. doi: 10.1126/sciadv.aax1157 [7] KOELMANS A A, NOR N H M, HERMSEN E, et al. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality [J]. Water Research, 2019, 155: 410-422. doi: 10.1016/j.watres.2019.02.054 [8] JAMBECK J R, GEYER R, WILCOX C, et al. Plastic waste inputs from land into the ocean [J]. Science, 2015, 347(6223): 768-771. doi: 10.1126/science.1260352 [9] ERNI-CASSOLA G, ZADJELOVIC V, GIBSON M I, et al. Distribution of plastic polymer types in the marine environment; A meta-analysis [J]. Journal of Hazardous Materials, 2019, 369: 691-698. doi: 10.1016/j.jhazmat.2019.02.067 [10] ARTHUR C, BAKER J, BAMFORD H, et al. Summary of the international research workshop on the occurrence, effects, and fate of microplastic marine debris [R]. Department of Commerce: National Oceanic and Atmospheric Administration. Technocal Memorandum NOS-OR&R-30. 2009. [11] DONG X F, ZHENG M G, QU L Y, et al. Sorption of tonalide, musk xylene, galaxolide, and musk ketone by microplastics of polyethylene and polyvinyl chloride [J]. Marine Pollution Bulletin, 2019, 144: 129-133. doi: 10.1016/j.marpolbul.2019.04.046 [12] WRIGHT S L, ROWE D, THOMPSON R C, et al. Microplastic ingestion decreases energy reserves in marine worms [J]. Current Biology, 2013, 23(23): R1031-R1033. doi: 10.1016/j.cub.2013.10.068 [13] BROWNE M A, NIVEN S J, GALLOWAY T S, et al. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity [J]. Current Biology, 2013, 23(23): 2388-2392. doi: 10.1016/j.cub.2013.10.012 [14] BIHANIC F L, CLÉRANDEAU C, CORMIER B, et al. Organic contaminants sorbed to microplastics affect marine medaka fish early life stages development [J]. Marine Pollution Bulletin, 2020, 154: 111059. doi: 10.1016/j.marpolbul.2020.111059 [15] PEREZ-LOBATO R, MUSTIELES V, CALVENTE I, et al. Exposure to bisphenol A and behavior in school-age children [J]. NeuroToxicology, 2016, 53: 12-19. doi: 10.1016/j.neuro.2015.12.001 [16] HAL N V D, YERUHAM E, SHUKIS D, et al. Uptake and incorporation of PCBs by eastern Mediterranean rabbitfish that consumed microplastics [J]. Marine Pollution Bulletin, 2020, 150: 110697. doi: 10.1016/j.marpolbul.2019.110697 [17] PAULINE P, JEROME C, CHRISTELLE C, et al. Toxicity assessment of pollutants sorbed on environmental sample microplastics collected on beaches: Part Ⅰ-adverse effects on fish cell line [J]. Environmental Pollution, 2019, 248: 1088-1097. doi: 10.1016/j.envpol.2018.12.091 [18] XIA B, ZHANG J, ZHAO X G, et al. Polystyrene microplastics increase uptake, elimination and cytotoxicity of decabromodiphenyl ether (BDE-209) in the marine scallop Chlamys farreri [J]. Environmental Pollution, 2020, 258: 113657. doi: 10.1016/j.envpol.2019.113657 [19] MATTSSON K, HANSSON L A, CEDERVALL T. Nano-plastics in the aquatic environment [J]. Environmental Science Processes & Impacts, 2015, 17: 1712-1721. [20] WANG W F, WANG J. Comparative evaluation of sorption kinetics and isotherms of pyrene onto microplastics [J]. Chemosphere, 2018, 193: 567-573. doi: 10.1016/j.chemosphere.2017.11.078 [21] WANG J, LIU X H, LIU G N, et al. Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene [J]. Ecotoxicology and Environmental Safety, 2019, 173: 331-338. doi: 10.1016/j.ecoenv.2019.02.037 [22] HALE S E, CORNELISSEN G, ARP H P H. Comment on "partition coefficients of organic contaminants with carbohydrates" [J]. Environmental Science & Technology, 2011, 45(3): 1158. [23] ROCHMAN C M, HOH E, HENTSCHEL B T, et al. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: Implications for plastic marine debris [J]. Environmental Science & Technology, 2013, 47(3): 1646-1654. [24] TERZYK A P, GAUDEN P A, FURMANIAK S, et al. Molecular dynamics simulation insight into the mechanism of phenol adsorption at low coverages from aqueous solutions on microporous carbons [J]. Physical Chemistry Chemical Physics, 2010, 12(4): 812-817. doi: 10.1039/B919794J [25] ROCHMAN C M, MANZANO C, HENTSCHEL B T, et al. Polystyrene plastic: A source and sink for polycyclic aromatic hydrocarbons in the marine environment [J]. Environmental Science & Technology, 2013, 47(24): 13976-13984. [26] LIU X M, XU J, ZHAO Y P, et al. Hydrophobic sorption behaviors of 17β-Estradiol on environmental microplastics [J]. Chemosphere, 2019, 226: 726-735. doi: 10.1016/j.chemosphere.2019.03.162 [27] 彭盼盼, 杨建军, 吴庆云, 等. 硅基和氨酯基协同改性水性丙烯酸树脂的制备与性能 [J]. 精细化工, 2020, 37: 1710-1715. PENG P P, YANG J J, WU Q Y, et al. Preparation and properties of waterborne acrylic resin synergistic modification by silicon and polyurethane groups [J]. Fine Chemicals, 2020, 37: 1710-1715(in Chinese).
[28] RAZANAJATOVO R M, DING J N, ZHANG S S, et al. Sorption and desorption of selected pharmaceuticals by polyethylene microplastics [J]. Marine Pollution Bulletin, 2018, 136: 516-523. doi: 10.1016/j.marpolbul.2018.09.048 [29] 王晖, 顾帼华, 邱冠周. 接触角法测量高分子材料的表面能 [J]. 中南大学学报, 2006, 37(5): 942-947. WANG H, GU G H, QIU G Z. Evaluation of surface free energy of polymers by contact angle goniometry [J]. Journal of Central South University, 2006, 37(5): 942-947(in Chinese).
[30] YUKIE M, TOMOHIKO I, HIDESHIGE T, et al. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment [J]. Environmental Science & Technology, 2001, 35(2): 318-324. [31] JENNY W, MOHAMMED B, TOMAS R, et al. Additives and other hazardous compounds in electronic products and their waste [M]. 2011. The Handbook of Environmental Chemistry, vol 18: Global Risk-Based Management of Chemical Additives I: Production, Usage and Environmental Occurrence. [32] ROCHMAN C M, HOH E, KUROBE T, et al. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress [J]. Scientific Reports, 2013, 3(1): 3263. doi: 10.1038/srep03263 [33] RIOS M L M, R J P. Characterisation of microplastics and toxic chemicals extracted from microplastic samples from the North Pacific Gyre [J]. Environmental Chemistry, 2015, 12(5): 611-617. doi: 10.1071/EN14236 [34] BRENNECKE D, DUARTE B, PAIVA F, et al. Microplastics as vector for heavy metal contamination from the marine environment [J]. Estuarine, Coastal and Shelf Science, 2016, 178: 189-195. doi: 10.1016/j.ecss.2015.12.003 [35] WANG W F, WANG J. Different partition of polycyclic aromatic hydrocarbon on environmental particulates in freshwater: Microplastics in comparison to natural sediment [J]. Ecotoxicology and Environmental Safety, 2017, 147: 648-655. [36] ZHANG J, HUA K N. Adsorption of antibiotics on microplastics [J]. Environmental Pollution, 2018, 237: 460-467. doi: 10.1016/j.envpol.2018.02.050 [37] WANG Z, CHEN M L, ZHANG L W. Sorption behaviors of phenanthrene on the microplastics identified in a mariculture farm in Xiangshan Bay, southeastern China [J]. Science of the Total Environment, 2018, 628–629: 1617-1626. [38] CHIOU C T, FREED V H, SCHMEDDING D W, et al. Partition coefficient and bioaccumulation of selected organic chemicals [J]. Environmental Science & Technology, 1977, 11(5): 475-478. [39] 李晓娜, 宋洋, 贾明云, 等. 生物质炭对有机污染物的吸附及机理研究进展 [J]. 土壤学报, 2017, 54(6): 1313-1325. LI X N, SONG Y, JIA M Y, et al. A review of researches on biochar adsorbing organic contaminants and its mechanism [J]. Acta Pedologica Sinica, 2017, 54(6): 1313-1325(in Chinese).
[40] HWANG L, JOON S W, HWAN K J. Sorption capacity of plastic debris for hydrophobic organic chemicals [J]. Science of the Total Environment, 2014, 470-471: 1545-1552. doi: 10.1016/j.scitotenv.2013.08.023 [41] ZHAN Z W, WANG J D, PENG J P, et al. Sorption of 3,3',4,4'-tetrachlorobiphenyl by microplastics: A case study of polypropylene [J]. Marine Pollution Bulletin, 2016, 110(1): 559-563. doi: 10.1016/j.marpolbul.2016.05.036 [42] HUANG W H, CHEN B L. Interaction mechanisms of organic contaminants with burned straw ash charcoal [J]. Journal of Environmental Sciences, 2010, 22(10): 1586-1594. doi: 10.1016/S1001-0742(09)60293-X [43] ZHANG P, HUANG P, SUN H W, et al. The structure of agricultural microplastics (PT, PU and UF) and their sorption capacities for PAHs and PHE derivates under various salinity and oxidation treatments [J]. Environmental Pollution, 2020, 257: 113525. doi: 10.1016/j.envpol.2019.113525 [44] 王菲, 孙红文. 生物炭对极性与非极性有机污染物的吸附机理 [J]. 环境化学, 2016, 35(6): 1134-1141. doi: 10.7524/j.issn.0254-6108.2016.06.2015122404 WANG F, SUN H W. Sorption mechanisms of polar and apolar organic contaminants onto biochars [J]. Environmental Chemistry, 2016, 35(6): 1134-1141(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.06.2015122404
[45] LI Z W, HU X L, QIN L X, et al. Evaluating the effect of different modified microplastics on the availability of polycyclic aromatic hydrocarbons [J]. Water Research, 2019, 170: 115290. [46] DABROWSKI A. Adsorption-from theory to practice [J]. Advances in Colloid and Interface Science, 2001, 93(1-3): 135-224. doi: 10.1016/S0001-8686(00)00082-8 [47] WU P F, CAI Z W, JIN H B, et al. Adsorption mechanisms of five bisphenol analogues on PVC microplastics [J]. Science of the Total Environment, 2018, 650: 671-678. [48] VELEZ J F M, SHASHOU Y, SYBERG K, et al. Considerations on the use of equilibrium models for the characterisation of HOC-microplastic interactions in vector studies [J]. Chemosphere, 2018, 210: 359-365. doi: 10.1016/j.chemosphere.2018.07.020 [49] BAKIR A, ROWLAND S J, THOMPSON R C. Competitive sorption of persistent organic pollutants onto microplastics in the marine environment [J]. Marine Pollution Bulletin, 2012, 64(12): 2782-2789. doi: 10.1016/j.marpolbul.2012.09.010 [50] GUO X T, PANG J W, CHEN S Y, et al. Sorption properties of tylosin on four different microplastics [J]. Chemosphere, 2018, 209: 240-245. doi: 10.1016/j.chemosphere.2018.06.100 [51] WANG F, SHIH K M, LI X Y. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics [J]. Chemosphere, 2015, 119: 841-847. doi: 10.1016/j.chemosphere.2014.08.047 [52] XU B L, LIU F, BROOKES P C, et al. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter [J]. Environmental Pollution, 2018, 240: 87-94. doi: 10.1016/j.envpol.2018.04.113 [53] ZHANG H B, WANG J Q, ZHOU B Y, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors [J]. Environmental Pollution, 2018, 243: 1550-1557. doi: 10.1016/j.envpol.2018.09.122 [54] NG H Y, ELIMELECH M. Influence of colloidal fouling on rejection of trace organic contaminants by reverse osmosis [J]. Journal of Membrane Science, 2004, 244(1-2): 215-226. doi: 10.1016/j.memsci.2004.06.054 [55] LIU X M, SHI H H, XIE B, et al. Microplastics as both a sink and a source of Bisphenol A in the marine environment [J]. Environmental Science & Technology, 2019, 53(17): 10188-10196. [56] ENDO S, DROGE S T J, GOSS K U. Polyparameter linear free energy models for polyacrylate fiber−water partition coefficients to evaluate the efficiency of solid-phase microextraction [J]. Analytical Chemistry, 2011, 83(4): 1394-1400. doi: 10.1021/ac102868e [57] LUDMILLA A, CLAIRE M, JOCELYNE M-B, et al. Interactions of oxytetracycline with a smectite clay: A spectroscopic study with molecular simulations [J]. Environmental Science & Technology, 2010, 44(20): 7839-7845. [58] HÜFFER T, HOFMANN T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution [J]. Environmental Pollution, 2016, 214: 194-201. doi: 10.1016/j.envpol.2016.04.018 [59] MARC T, J P J, L B J, et al. Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar) [J]. Environmental Science & Technology, 2011, 45(23): 10020-10027. [60] KARANFIL T, KILDUFF J E. Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1. Priority Pollutants [J]. Environmental Science & Technology, 1999, 33(18): 3217-3224. [61] SATOSHI E, PETER G, C S T. Absorption or adsorption? Insights from molecular probes n-alkanes and cycloalkanes into modes of sorption by environmental solid matrices [J]. Environmental Science & Technology, 2008, 42(11): 3989-3995. [62] WEBER W J, HUANG W. A distributed reactivity model for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions - Response [J]. Environmental Science & Technology, 1996, 30(10): 3130-3131. [63] 王宁, 侯艳伟, 彭静静, 等. 生物炭吸附有机污染物的研究进展 [J]. 环境化学, 2012, 31(3): 287-295. WANG N, HOU Y W, PENG J J, et al. Research progess on sorption of orgnic contaminants to biochar [J]. Environmental Chemistry, 2012, 31(3): 287-295(in Chinese).
[64] ZHANG X J, ZHENG M G, WANG L, et al. Sorption of three synthetic musks by microplastics [J]. Marine Pollution Bulletin, 2017, 126: 606-609. [65] LI Y D, LI M, LI Z, et al. Effects of particle size and solution chemistry on Triclosan sorption on polystyrene microplastic [J]. Chemosphere, 2019, 231: 308-314. doi: 10.1016/j.chemosphere.2019.05.116 [66] WU C X, ZHANG K, HUANG X L, et al. Sorption of pharmaceuticals and personal care products to polyethylene debris [J]. Environmental Science and Pollution Research, 2016, 23: 1-8. doi: 10.1007/s11356-015-5714-x [67] ZUO L Z, LI H X, LIN L, et al. Sorption and desorption of phenanthrene on biodegradable poly(butylene adipate co-terephtalate) microplastics [J]. Chemosphere, 2018, 215: 25-32. [68] ADIL B, J R S, C T R. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions [J]. Environmental Pollution, 2014, 185: 16-23. doi: 10.1016/j.envpol.2013.10.007 [69] GUO X, CHEN C, WANG J L. Sorption of sulfamethoxazole onto six types of microplastics [J]. Chemosphere, 2019, 228: 300-308. doi: 10.1016/j.chemosphere.2019.04.155 [70] FANG S, YU W S, LI C L, et al. Adsorption behavior of three triazole fungicides on polystyrene microplastics [J]. Science of the Total Environment, 2019, 691: 1119-1126. doi: 10.1016/j.scitotenv.2019.07.176 [71] XU B L, LIU F, BROOKES P C, et al. The sorption kinetics and isotherms of sulfamethoxazole with polyethylene microplastics [J]. Marine Pollution Bulletin, 2018, 131: 191-196. doi: 10.1016/j.marpolbul.2018.04.027 [72] XU P C, GE W, CHAI C, et al. Sorption of polybrominated diphenyl ethers by microplastics [J]. Marine Pollution Bulletin, 2019, 145: 260-269. doi: 10.1016/j.marpolbul.2019.05.050 [73] PANDELOVA M, HENKELMANN B, BUSSIAN B M, et al. Results of the second national forest soil inventory in Germany - Interpretation of level and stock profiles for PCDD/F and PCB in terms of vegetation and humus type [J]. Science of the Total Environment, 2018, 610-611: 1-9. doi: 10.1016/j.scitotenv.2017.07.246 [74] 于艳新, 李奇, 王慧, 等. 食物中典型持久性有机污染物(POPs)的生物可给性研究综述 [J]. 生态环境学报, 2015, 24(8): 1406-1414. YU Y X, LI Q, WANG H, et al. The bioaccessibility of typical persistent organic pollutants (POPs) in food matrix: A review [J]. Ecology and Environment, 2015, 24(8): 1406-1414(in Chinese).
[75] HEINRICH P, BRAUNBECK T. Bioavailability of microplastic-bound pollutants in vitro: The role of adsorbate lipophilicity and surfactants [J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 2019, 221: 59-67. [76] LIU G Z, ZHU Z L, YANG Y X, et al. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater [J]. Environmental Pollution, 2018, 246: 26-33. [77] LIU P, QIAN L, WANG H Y, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes [J]. Environmental Science & Technology, 2019, 53(7): 3579-3588. [78] HÜFFER T, WENIGER A K, HOFMANN T. Sorption of organic compounds by aged polystyrene microplastic particles [J]. Environmental Pollution, 2018, 236: 218-225. doi: 10.1016/j.envpol.2018.01.022 [79] MÜLLER A, BECKER R, DORGERLOH U, et al. The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics [J]. Environmental Pollution, 2018, 240: 639-646. doi: 10.1016/j.envpol.2018.04.127 [80] ENDO S, TAKIZAWA R, OKUDA K, et al. Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: Variability among individual particles and regional differences [J]. Marine Pollution Bulletin, 2005, 50(10): 1103-1114. doi: 10.1016/j.marpolbul.2005.04.030 [81] DING L, MAO R F, MA S R, et al. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants [J]. Water Research, 2020, 174: 115634. doi: 10.1016/j.watres.2020.115634 [82] LIU F F, LIU G Z, ZHU Z L, et al. Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry [J]. Chemosphere, 2018, 214: 688-694. [83] LIU X W, ZHENG M G, WANG L, et al. Sorption behaviors of tris-(2, 3-dibromopropyl) isocyanurate and hexabromocyclododecanes on polypropylene microplastics [J]. Marine Pollution Bulletin, 2018, 135: 581-586. doi: 10.1016/j.marpolbul.2018.07.061 [84] 潘伟健, 康园. 环境介质中有机污染物生物有效性研究综述 [J]. 广东化工, 2020, 47(6): 147-148,134. doi: 10.3969/j.issn.1007-1865.2020.06.063 PAN W J, KANG Y. Review on the bioavailability of organic pollutants in environmental media [J]. Guangdong Chemical Industry, 2020, 47(6): 147-148,134(in Chinese). doi: 10.3969/j.issn.1007-1865.2020.06.063
[85] 张凯, 孙红文. (可降解)微塑料颗粒吸附有机污染物及对其生物有效性的影响 [J]. 环境化学, 2018, 37(3): 375-382. doi: 10.7524/j.issn.0254-6108.2018020509 ZHANG K, SUN H W. Adsorption of organic pollutants on (degradable) microplastics and the influences on their bioavailability [J]. Environmental Chemistry, 2018, 37(3): 375-382(in Chinese). doi: 10.7524/j.issn.0254-6108.2018020509
[86] YANG W F, GAO X X, WU Y X, et al. The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa [J]. Ecotoxicology and Environmental Safety, 2020, 195: 110484. doi: 10.1016/j.ecoenv.2020.110484 [87] ZHU Z L, WANG S C, ZHAO F F, et al. Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum [J]. Environmental Pollution, 2018, 246: 509-517. [88] GUO X Y, WANG X L, ZHOU X Z, et al. Sorption of four hydrophobic organic compounds by three chemically distinct polymers: Role of chemical and physical composition [J]. Environmental Science & Technology, 2012, 46(13): 7252-7259. [89] SUHRHOFF T J, SCHOLZ-BöTTCHER B M. Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics - A lab experiment [J]. Marine Pollution Bulletin, 2016, 102(1): 84-94. doi: 10.1016/j.marpolbul.2015.11.054 [90] 杨婧婧, 徐笠, 陆安祥, 等. 环境中微(纳米)塑料的来源及毒理学研究进展 [J]. 环境化学, 2018, 37(3): 383-396. YANG J J, XU L, LU A Y, et al. Research progress on the sources and toxicology of micro (nano) plastics in environment [J]. Environmental Chemistry, 2018, 37(3): 383-396(in Chinese).
[91] CHEN Q Q, SANTOS M M D, TANABE P, et al. Bioassay guided analysis coupled with non-target chemical Screening in polyethylene plastic shopping bag fragments after exposure to simulated gastric juice of fish [J]. Journal of Hazardous Materials, 2020, 401: 123421. [92] COFFIN S, HUANG G Y, LEE I, et al. Fish and seabird gut conditions enhance desorption of estrogenic chemicals from commonly-ingested plastic items [J]. Environmental Science & Technology, 2019, 53: 4588-4599. [93] CORCORAN P L, NORRIS T, CECCANESE T, et al. Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment record [J]. Environmental Pollution, 2015, 204: 17-25. doi: 10.1016/j.envpol.2015.04.009