-
混凝剂是指能和水溶液中的胶体或者悬浮颗粒产生絮状物沉淀的水处理药剂,按化学成分可分为有机混凝剂、无机混凝剂和复合混凝剂三大类,主要机理包括压缩双电子层、电中和、吸附架桥和网捕卷扫作用等[1-2]。目前我国使用的无机高分子混凝剂占据80%以上,这一类混凝剂是在传统铝盐和铁盐的基础上发展起来的一类混凝剂,水解后大多呈络合离子形态[3]。其中,聚合氯化铝[PAC,Alm(OH)n(H2O)x]是发展多年的一种无机高分子混凝剂,也是目前我国水处理和饮用水净化的主导铝盐产品。结果显示,PAC的水解产物呈现较多正电荷、较强的电中和能力和较优异的吸附能力,具有絮体成型快、沉淀性能好、污泥产生量少等优点[4-5]。但是PAC的水解反应受环境条件的影响较大,它在水中的残余铝也具有生物毒性;此外相比有机混凝剂,PAC的吸附架桥能力相对较弱且污泥产量仍较高[6-7]。因此近年来学者开展了关于PAC与高分子有机混凝剂复合应用的相关研究[8-9],结果表明改性或复合混凝剂能够兼具强阳离子基团和大分子长链结构的特征,因此能够减少铝盐用量、提高吸附架桥作用、增强絮凝能力、拓展PAC的适用范围[10]。
近年来湖库水体富营养化程度不断提高,它影响了社会的可持续发展并始终是研究热点[11]。有害水华暴发是富营养化最重要的表现形式和最直接的后果,其中蓝藻由于繁殖迅速且危害较大而成为学者研究最多的种属[12-13]。多年来大量学者开展关于含藻水体应急的相关研究,其主要目的在于迅速去除或转移水体中的蓝藻细胞,其中混凝除藻是一种常见的化学除藻方法。它是指在混凝剂的作用下,使水体中处于相对稳定状态的藻细胞脱稳凝聚,进而形成较大尺寸的絮体,最终实现絮体沉淀和固液分离[14]。但是,这些研究大多仅聚焦于去除率或仅关注单一因子的作用效果,它们对混凝内在机理的研究相对缺乏,对多种环境条件耦合影响下改性或复合混凝剂对蓝藻处理效果的论述也不多见。此外,关于不同生长阶段蓝藻的代谢物含量等生理特征对混凝效果影响的研究较少,因此开展相关研究可为混凝法除藻工艺的深入研究和推广应用提供科学依据和理论基础。
本研究选择典型蓝藻为研究对象,开展自制的PAC−改性淀粉复合混凝剂对蓝藻处理效果的相关研究,系统研究了不同环境条件耦合下蓝藻去除率的变化,具体包括:(1)不同pH条件下混凝剂的投加量对蓝藻去除效果的影响;(2)蓝藻胞外多糖(EPS)对混凝去除效果的影响;(3)主要操作工况对蓝藻去除效果的影响。
PAC−改性淀粉复合混凝剂对铜绿微囊藻的去除
Effects of composite coagulant with modified starch and PAC on the removal of Microcystis aeruginosa
-
摘要: 利用阳离子型淀粉复合聚合氯化铝(PAC)制得的混凝剂对铜绿微囊藻进行处理,并进行多因素影响下的比较分析。Zeta电位、扫描电镜等结果表明,相比传统PAC,复合混凝剂所带正电荷量升高,它对藻细胞的电中和作用是对蓝藻重要的去除机理,而PAC水解产物和改性淀粉的吸附架桥和网捕卷扫作用也有重要作用。在所选范围内,复合混凝剂在弱酸性(pH=5.5)和中性条件下(pH=7.5)的去除效果较好,最佳去除率能超过80%。不同pH下复合混凝剂对蓝藻的去除存在最佳投加量,投加量过高时它对蓝藻的去除率发生下降。当达到最佳去除率时,延滞期蓝藻所需复合混凝剂投加量最低,稳定生长期蓝藻需要的投加量最高,蓝藻生长过程中产生的胞外物质是导致该结果的重要原因,具体表现为:蓝藻的胞外多糖(EPS)会增加混凝剂的消耗量,但一定量EPS也有助于混凝剂的作用效果。随着初始藻密度提高(1×105—5×106 cells·mL−1),复合混凝剂对蓝藻的处理效果逐渐发生下降。由于搅拌是为了使混凝剂与藻细胞充分混匀并形成尺寸较大且结构稳定的絮体,因此快搅拌速率不宜过高或过低,快搅拌速率在300 r·min−1时蓝藻的去除效果更好;慢搅拌速率为40 r·min−1且搅拌时间为20 min时蓝藻去除率最高。Abstract: The composite coagulant with modified starch and polymeric aluminium chloride (PAC) was used to deal with Microcystis aeruginosa under different conditions. Confirmed by results such as Zeta potential and scanning electron microscope (SEM) images, the amount of positive charges carried by composite coagulant increased compared with that of original PAC, and charge neutralization of cells played an important role on the removal of M. aeruginosa. Besides, the adsorption bridging and sweeping by the hydrolysate of PAC and modified starch were also involved in the removal process. Within the selected pH range, the removal rate of M. aeruginosa was higher under weak acidity conditions (pH=5.5) and neutral conditions (pH=7.5) by the composite coagulant, when more than 80% of M. aeruginosa could be removed. Moreover, there was an optimal dosage for the composite coagulant at different pH, and the removal rate decreased when coagulant dosage was too high. At the best removal rate, the required dosage of composite coagulant was lowest for M. aeruginosa at the lag phase and highest for M. aeruginosa at stationary growth, which could be mainly caused by the extracellular substances produced by algae. The extracellular polysaccharide (EPS) produced by M. aeruginosa increased the consumption of coagulant, while certain amount of EPS could also contribute to the coagulation performance. For the initial densities of M. aeruginosa ranging from 1×105—5×106 cells·mL−1, the removal efficiency of composite coagulant decreased with increasing algal densities. Since agitation was used to thoroughly mix the coagulant and cells and to form the large size flocs with stable structure, the speed of fast-stirring should not be too high nor too low. The removal rate of M. aeruginosa was better at 300 r·min−1 of fast−stirring. Meanwhile, the removal rate of M. aeruginosa was highest at 40 r·min−1 of slow−stirring for 20 min.
-
Key words:
- composite coagulant /
- cyanobacteria /
- removal rate /
- Zeta potential /
- extracellular polysaccharide (EPS)
-
图 3 (a)不同时期铜绿微囊藻光合活性及EPS含量,(b)对数生长期经Alcian blue 8GX染色的铜绿微囊藻光学显微镜观测图,(c)混凝前对数期铜绿微囊藻的扫描电镜图,(d)培养期间藻细胞Zeta电位
Figure 3. (a) Photosynthetic activity and EPS content, (b) microscopic observation of M. aeruginosa stained with Alcian blue 8GX, (c) SEM images M. aeruginosa before flocculation, and (d) Zeta potential of M. aeruginosa cells
图 4 (a)不同pH条件下混凝剂投加量的影响;(b)不同混凝剂投加量下藻细胞表面Zeta电位和系统pH变化(初始pH = 7.5);(c)不同pH条件下藻细胞和混凝剂Zeta电位;(d)不同pH条件下10 mg L−1复合混凝剂和常规PAC对铜绿微囊藻去除率的比较,(e)使用复合混凝剂处理后絮体电镜图(投加量为10 mg L−1,初始pH = 7.5)
Figure 4. (a) Effects of different dosages of coagulant on the removal of M. aeruginosa at different pH, (b) Zeta potential of M. aeruginosa and pH of samples with different dosages of coagulant (initial pH = 7.5), (c) Zeta potential of M. aeruginosa and coagulant at different pH, (d) the removal of M. aeruginosa by composite coagulant and normal PAC at different pH with the dosage of 10 mg L−1, (e) SEM images of floc with composite coagulant (initial pH = 7.5 with the dosage of 10 mg L−1)
表 1 不同离心处理后蓝藻细胞EPS含量(pg·cell−1)
Table 1. EPS content of cyanobacterial cells after different centrifugation treatments
溶解性
Dissolved EPS固着性
Bounded EPS总含量
Total content总含量降低百分比
Percentage reduction of total EPS未离心
Without centrifugation1.83 1.24 3.07 — 离心5 min
After 5 min of centrifugation0.35 0.94 1.29 58.0% 离心15 min
After 15 min of centrifugation0.11 0.18 0.29 90.6% -
[1] ZHU G C, ZHENG H L, CHEN W Y, et al. Preparation of a composite coagulant: Polymeric aluminum ferric sulfate (PAFS) for wastewater treatment [J]. Desalination, 2012, 285: 315-323. doi: 10.1016/j.desal.2011.10.019 [2] BARRADO-MORENO M M, BELTRÁN-HEREDIA J, MARTÍN-GALLARDO J. Removal of Oocystis algae from freshwater by means of tannin-based coagulant [J]. Journal of Applied Phycology, 2016, 28(3): 1589-1595. doi: 10.1007/s10811-015-0718-y [3] JANČULA D, MARŠÁLEK B. Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms [J]. Chemosphere, 2011, 85(9): 1415-1422. doi: 10.1016/j.chemosphere.2011.08.036 [4] HUANG J, YANG Z H, ZENG G M, et al. Influence of composite flocculant of PAC and MBFGA1 on residual aluminum species distribution [J]. Chemical Engineering Journal, 2012, 191: 269-277. doi: 10.1016/j.cej.2012.03.015 [5] 张文艺, 范培成, 李秋艳, 等. 聚合氯化铝-壳聚糖复合絮凝剂的合成及在蓝藻沼液预处理中的应用 [J]. 环境化学, 2012, 31(7): 1057-1062. ZHANG W Y, FAN P C, LI Q Y, et al. Synthesis of PACl-CTS composite coagulant and application in the pre-treatment of blue algae biogas slurry [J]. Environmental Chemistry, 2012, 31(7): 1057-1062(in Chinese).
[6] YANG Z L, GAO B Y, YUE Q Y, et al. Effect of pH on the coagulation performance of Al-based coagulants and residual aluminum speciation during the treatment of humic acid-Kaolin synthetic water [J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 596-603. [7] SUN F, PEI H Y, HU W R, et al. The lysis of Microcystis aeruginosa in AlCl3 coagulation and sedimentation processes [J]. Chemical Engineering Journal, 2012, 193-194: 196-202. doi: 10.1016/j.cej.2012.04.043 [8] 周庆, 杨小杰, 韩士群. PAC改性粘土处理蓝藻水华对水环境的影响 [J]. 湖泊科学, 2017, 29(2): 343-350. doi: 10.18307/2017.0210 ZHOU Q, YANG X J, HAN S Q. Impacts of PAC modified clay applied in the control of cyanobacteria bloom and left in water on water environment [J]. Journal of Lake Sciences, 2017, 29(2): 343-350(in Chinese). doi: 10.18307/2017.0210
[9] 杜晴, 宋荻, 唐宇农, 等. 淀粉改性絮凝剂与PAC复合絮凝发制品废水性能研究: 小试和中试 [J]. 环境化学, 2019, 38(9): 2081-2092. doi: 10.7524/j.issn.0254-6108.2018111101 DU Q, SONG D, TANG Y N, et al. Flocculation of hairwork wastewater using starch-based flocculants combined with PAC: Laboratory and pilot scale [J]. Environmental Chemistry, 2019, 38(9): 2081-2092(in Chinese). doi: 10.7524/j.issn.0254-6108.2018111101
[10] DU Q, WEI H, LI A M, et al. Evaluation of the starch-based flocculants on flocculation of hairwork wastewater [J]. The Science of the Total Environment, 2017, 601/602: 1628-1637. doi: 10.1016/j.scitotenv.2017.06.029 [11] GLIBERT P M, BURKHOLDER J M. Harmful algal blooms and eutrophication: “strategies” for nutrient uptake and growth outside the Redfield comfort zone [J]. Chinese Journal of Oceanology and Limnology, 2011, 29(4): 724-738. doi: 10.1007/s00343-011-0502-z [12] PAERL H W, XU H, MCCARTHY M J, et al. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy [J]. Water Research, 2011, 45(5): 1973-1983. doi: 10.1016/j.watres.2010.09.018 [13] 秦伯强, 杨桂军, 马健荣, 等. 太湖蓝藻水华“暴发”的动态特征及其机制 [J]. 科学通报, 2016, 61(7): 759-770. doi: 10.1360/N972015-00400 QIN B Q, YANG G J, MA J R, et al. Dynamics of variability and mechanism of harmful cyanobacteria bloom in Lake Taihu, China [J]. Chinese Science Bulletin, 2016, 61(7): 759-770(in Chinese). doi: 10.1360/N972015-00400
[14] 张龙, 乔俊莲, 雷青. 高锰酸钾预氧化强化混凝去除绿藻的研究 [J]. 环境科学学报, 2013, 33(1): 73-78. ZHANG L, QIAO J L, LEI Q. The study of green algae removal by potassium permanganate pre-oxidation enhanced coagulation [J]. Acta Scientiae Circumstantiae, 2013, 33(1): 73-78(in Chinese).
[15] REN L X, WANG P F, WANG C, et al. Algal growth and utilization of phosphorus studied by combined mono-culture and co-culture experiments[J]. Environmental Pollution, 2017, 220(Pt A): 274-285. [16] WANG L, LIANG W Y, YU J, et al. Flocculation of Microcystis aeruginosa using modified larch tannin [J]. Environmental Science & Technology, 2013, 47(11): 5771-5777. [17] 马亚锋, 王玉琪, 郑岚, 等. 阳离子淀粉絮凝剂合成及处理煤矿井废水性能研究 [J]. 工业用水与废水, 2013, 44(1): 58-62. doi: 10.3969/j.issn.1009-2455.2013.01.016 MA Y F, WANG Y Q, ZHENG L, et al. Synthesis of cationic starch flocculant and its performance when treating coal mine wastewater [J]. Industrial Water & Wastewater, 2013, 44(1): 58-62(in Chinese). doi: 10.3969/j.issn.1009-2455.2013.01.016
[18] KHALIL M I, FARAG S, HASHEM A. Preparation and characterization of some cationic starches [J]. Starch - Strke, 2010, 45(6): 226-231. [19] YANG Z, KONG F X, SHI X L, et al. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (cyanobacteria) during flagellate grazing(1) [J]. Journal of Phycology, 2008, 44(3): 716-720. doi: 10.1111/j.1529-8817.2008.00502.x [20] 郭丽丽, 朱伟, 李明. 水中主要阳离子对铜绿微囊藻生长及多糖的影响 [J]. 生态环境学报, 2013, 22(8): 1358-1364. doi: 10.3969/j.issn.1674-5906.2013.08.014 GUO L L, ZHU W, LI M. Effect of major cations in water on the growth and polysaccharide contents of Microcystis aeruginosa [J]. Ecology and Environment Sciences, 2013, 22(8): 1358-1364(in Chinese). doi: 10.3969/j.issn.1674-5906.2013.08.014
[21] HOU J, YANG Z J, WANG P F, et al. Changes in Microcystis aeruginosa cell integrity and variation in microcystin-LR and proteins during Tanfloc flocculation and floc storage [J]. The Science of the Total Environment, 2018, 626: 264-273. doi: 10.1016/j.scitotenv.2018.01.074 [22] GAO L, PAN X L, ZHANG D Y, et al. Extracellular polymeric substances buffer against the biocidal effect of H2O2 on the bloom-forming cyanobacterium Microcystis aeruginosa [J]. Water Research, 2015, 69: 51-58. doi: 10.1016/j.watres.2014.10.060 [23] 阮铃铃. 植物多酚抑藻效能与其作用下藻细胞生理特征的研究[D]. 北京: 北京林业大学, 2011. RUAN L L. Study on the algal inhibition effect of plant polyphenols and algal cell physiological characteristics treated by them[D]. Beijing: Beijing Forestry University, 2011 (in Chinese).
[24] WANG X, WANG P F, WANG C, et al. Microcystin biosynthesis in Microcystis aeruginosa: Indirect regulation by iron variation [J]. Ecotoxicology & Environmental Safety, 2018, 148: 942-952. [25] 尤俊杰. PAC-改性淀粉复合絮凝剂的制备及性能研究[D]. 荆州: 长江大学, 2019. YOU J J. Study on the preparation and flocculating performance of the PAC-modified starch composite coagulant[D]. Jingzhou: Yangtze University, 2019.
[26] 吴挺峰, 秦伯强, 马健荣, 等. 浅水富营养化湖泊中蓝藻群体运动研究述评 [J]. 科学通报, 2019, 64(36): 3833-3843. WU T F, QIN B Q, MA J R, et al. Movement of cyanobacterial colonies in a large, shallow and eutrophic lake: A review [J]. Chinese Science Bulletin, 2019, 64(36): 3833-3843(in Chinese).
[27] LI M, ZHU W, GAO L, et al. Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates [J]. Journal of Applied Phycology, 2013, 25(4): 1023-1030. doi: 10.1007/s10811-012-9937-7 [28] YANG Y Y, HOU J, WANG P F, et al. Influence of extracellular polymeric substances on cell-NPs heteroaggregation process and toxicity of cerium dioxide NPs to Microcystis aeruginosa [J]. Environmental Pollution, 2018, 242(Nov.Pt.B): 1206-1216. [29] 乔俊莲, 董磊, 徐冉, 等. 胞外分泌物对铜绿微囊藻混凝去除的影响 [J]. 同济大学学报(自然科学版), 2011, 39(6): 879-883. doi: 10.3969/j.issn.0253-374x.2011.06.017 QIAO J L, DONG L, XU R, et al. Effect of extracellular organic matter on Microcystis aeruginosa coagulation removal [J]. Journal of Tongji University (Natural Science), 2011, 39(6): 879-883(in Chinese). doi: 10.3969/j.issn.0253-374x.2011.06.017
[30] HENDERSON R K, PARSONS S A, JEFFERSON B. The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae [J]. Water Research, 2010, 44(12): 3617-3624. doi: 10.1016/j.watres.2010.04.016 [31] SHARP E L, PARSONS S A, JEFFERSON B. The impact of seasonal variations in DOC arising from a moorland peat catchment on coagulation with iron and aluminium salts [J]. Environmental Pollution, 2006, 140(3): 436-443. doi: 10.1016/j.envpol.2005.08.001 [32] 周庆, 韩士群, 严少华. 聚合氯化铝与黏土的改性对富营养水体磷和蓝藻的同步去除 [J]. 环境化学, 2015, 34(11): 2059-2066. doi: 10.7524/j.issn.0254-6108.2015.11.2015041401 ZHOU Q, HAN S Q, YAN S H. Simultaneous removal of phosphorus and algae in eutrophic waters by modified complexes of aluminium polychlorid and clay [J]. Environmental Chemistry, 2015, 34(11): 2059-2066(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.11.2015041401
[33] PI K W, GAO L X, LI Z, et al. PAC with high content of Al13 polymer prepared by electrolysis with periodical reversal of electrodes [J]. Colloids & Surfaces:A Physicochemical & Engineering Aspects, 2011, 387(1-3): 113-117. [34] 张大为, 徐慧, 王希, 等. 藻形态及混凝剂组成对混凝-超滤过程的影响 [J]. 环境科学, 2017, 38(8): 3281-3289. ZHANG D W, XU H, WANG X, et al. Effects of algal morphology and Al species distribution on the coagulation-ultrafiltration process [J]. Environmental Science, 2017, 38(8): 3281-3289(in Chinese).
[35] 杨忠莲. 铝盐混凝剂在给水处理中残留铝含量、组分及影响机制研究[D]. 济南: 山东大学, 2013. YANG Z L. Content, speciation and influencing mechanism of residual Al during drinking water treatment using Al-based coagulants[D]. Jinan: Shandong University, 2013(in Chinese).
[36] PANNARD A, PÉDRONO J, BORMANS M, et al. Production of exopolymers (EPS) by cyanobacteria: Impact on the carbon-to-nutrient ratio of the particulate organic matter [J]. Aquatic Ecology, 2016, 50(1): 29-44. doi: 10.1007/s10452-015-9550-3 [37] ZHANG X Z, AMENDOLA P, HEWSON J C, et al. Influence of growth phase on harvesting of Chlorella zofingiensis by dissolved air flotation [J]. Bioresource Technology, 2012, 116: 477-484. doi: 10.1016/j.biortech.2012.04.002 [38] CHOW J S, LEE C, ENGEL A. The influence of extracellular polysaccharides, growth rate, and free coccoliths on the coagulation efficiency of Emiliania huxleyi [J]. Marine Chemistry, 2015, 175: 5-17. doi: 10.1016/j.marchem.2015.04.010 [39] 曹西华, 宋秀贤, 俞志明. 改性黏土除藻的絮凝形态学特征初步研究 [J]. 海洋学报(中文版), 2017, 39(6): 33-42. CAO X H, SONG X X, YU Z M. Morphological attributes of modified clays coagulated with red tide algae [J]. Acta Oceanologica Sinica, 2017, 39(6): 33-42(in Chinese).
[40] 钱爱娟. 蓝藻胞外聚合物对混凝工艺的影响与调控研究[D]. 扬州: 扬州大学, 2018. QIAN A J. Study on the effect and regulation of extracellular polymers of cyanobacteria on coagulation process[D]. Yangzhou: Yangzhou University, 2018(in Chinese).
[41] 王林. PAC与硅藻土强化混凝处理水中铜绿微囊藻影响因素的研究[D]. 广州: 华南理工大学, 2014. WANG L. Study on influencing factors of Microcystis aeruginosa removal in water by enhanced coagulation with PAC combining diatomite[D]. Guangzhou: South China University of Technology, 2014(in Chinese).
[42] WEI J C, GAO B Y, YUE Q Y, et al. Performance and mechanism of polyferric-quaternary ammonium salt composite flocculants in treating high organic matter and high alkalinity surface water [J]. Journal of Hazardous Materials, 2009, 165(1-3): 789-795. doi: 10.1016/j.jhazmat.2008.10.069 [43] DIVAKARAN R, PILLAI V N S. Flocculation of algae using chitosan [J]. Journal of Applied Phycology, 2002, 14(5): 419-422. doi: 10.1023/A:1022137023257 [44] VANDAMME D, FOUBERT I, MEESSCHAERT B, et al. Flocculation of microalgae using cationic starch [J]. Journal of Applied Phycology, 2010, 22(4): 525-530. doi: 10.1007/s10811-009-9488-8 [45] TAKAARA T, SANO D, KONNO H, et al. Cellular proteins of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride [J]. Water Research, 2007, 41(8): 1653-1658. doi: 10.1016/j.watres.2007.01.035 [46] 方艳娟. 藻类对混凝过程影响机制的研究[D]. 重庆: 重庆大学, 2018. FANG Y J. Study on the influence mechanism of algae on coagulation process[D]. Chongqing: Chongqing University, 2018(in Chinese).
[47] HENDERSON R K, PARSONS S A, JEFFERSON B. Successful removal of algae through the control of Zeta potential [J]. Separation Science and Technology, 2008, 43(7): 1653-1666. doi: 10.1080/01496390801973771 [48] AHMAD A L, YASIN N H M, DEREK C J C, et al. Optimization of microalgae coagulation process using chitosan [J]. Chemical Engineering Journal, 2011, 173(3): 879-882. doi: 10.1016/j.cej.2011.07.070