-
砷(As)是一种天然物质,可以多种形态存在于自然环境中。其氧化物对白血病、哮喘等疾病有很好的疗效,医用历史已超过2400年。然而,砷的使用在近一百多年来急剧下降,主要原因是其长期持续使用会导致砷中毒并引发血管疾病及多种癌症。因此,WHO和EPA的饮用水标准中限制均将砷浓度在10 μg·L−1 以下。然而,我国乃至全球范围内的砷污染仍十分严重,2020年Science报道,地下水砷污染已成为全球危机[1]。
砷的毒性与存在形态有关。其中,无机砷会通过与蛋白巯基反应造成毒性,还会破坏改变人类细胞及遗传物质的完整性。有机砷相对于无机砷来说,毒性较低。由于一些有机砷类化合物有促进畜禽生长、提高饲料利用率、杀菌和抑菌的效果,因此在养殖业中得到较为广泛的使用[2-3]。畜禽饲料添加剂中的有机砷主要为芳香族有机砷化合物(aromatic organoarsenic compounds, AOCs),用量主要在20—200 mg·kg−1[4-5]。AOCs被动物食用后在体内被吸收的很少,90%以上会以原形态通过代谢排出体外[6],从而使养殖废弃物中有大量的砷残留。在养殖业动物粪便的总砷中,有70%—75%为可溶性砷[7],说明大部分动物粪便中的有机砷易溶于养殖废水中。这些有机砷以直接或施肥的方式进入水域、土壤中,通过化学和生物降解等方式转化为对环境毒性更大的无机砷,并在环境中经生物富集作用对人体产生潜在危害,从而引起一系列砷污染的环境效应[8]。
鉴于AOCs对环境的潜在危害,欧盟、美国和中国均已禁止了其在动物饲料添加剂中的使用。然而,在许多肉类生产及出口大国,如墨西哥、阿根廷、巴西、越南等,AOCs类饲料添加剂仍被允许使用,可能导致砷在环境中的大量堆积[9-10]。因此,研究AOCs在环境中的存在和迁移转化,探索其去除方法及影响去除效果的关键机制,对于中国乃至全球亟需解决的砷污染防治问题具有重要的理论与现实意义。目前,虽然无机砷在环境(如土壤、沉积物、地表水和地下水)中的迁移转化和去除已被广泛报道和总结,然而对有机砷的研究还很有限。因此,本综述首先整理了环境中常见AOCs的种类、性质和污染现状;进而系统总结国内外去除废水及环境中AOCs的方法、效果及机制;在此基础上,探讨目前AOCs去除领域的研究空白和需求。
新型芳香族有机砷污染物的环境行为及去除研究进展
An emerging pollutant of aromatic organoarsenic compounds: Environmental transfer and remediation methods
-
摘要: 砷作为一种剧毒的重金属元素,其环境行为和去除方法一直受到国内外的广泛关注。目前,无机砷在全球范围内的迁移转化、毒性和去除方法已经进行了深入的研究并取得了一系列成果。与之相比,芳香族有机砷化合物(AOCs)作为一种新型的有机-无机复合型砷污染物,其相关研究仍然较少。AOCs作为动物饲料添加剂的一种,在使用过程中有向环境中释放无机砷的风险,因此逐渐成为砷污染领域的新关注点之一。本文综述了AOCs类污染物的来源、环境行为及去除方法的研究进展,对不同去除方法的效果及机制进行了对比分析,并针对现有研究中存在的不足和问题,提出了对AOCs污染物未来研究趋势的展望,对环境中的砷污染防治具有重要意义。Abstract: Arsenic is a highly toxic heavy metal element. Its environmental transfer and remediation method have been a major global concern for a long time. At present, the migration, toxicity and removal of inorganic arsenic have been studied in depth, which have made a series of achievements. However, as a new type of organic-inorganic arsenic contaminant, the environmental transfer and removal of aromatic organoarsenic compounds (AOCs) are relatively less studied. As a kind of animal feed additive, AOCs have the risk of releasing inorganic arsenic into environment during their use, and thus has become one of the emerging concerns for of arsenic remediation. This paper reviewed the research progress in the origin, transfer and removal of AOCs pollutants. The removal effect and mechanism of different remediation methods were summarized and discussed by contrast. In view of the shortcomings and problems existing in current research, the prospect and research trend of AOCs pollutants in the future were also proposed. The results and discussion of this paper is of great significance to the prevention and control of arsenic pollution in environment.
-
Key words:
- organoarsenic /
- migration and transformation /
- degradation /
- adsorption /
- organic-inorganic synergism
-
图 1 p-ASA的光降解过程[24]
Figure 1. Proposed photodegradation pathway of p-ASA
图 2 CuFe2O4活化过硫酸盐对p-ASA去除机制(CuFe2O4活化PMS产生SO4−、·OH和O2·−等多种自由基,将p-ASA氧化为As(Ⅲ)和As(Ⅴ),产生的无机砷被直接吸附在CuFe2O4表面)[41]
Figure 2. Removal mechanism of p-ASA by CuFe2O4 activated peroxymonosulfate process
图 3 非均相Fenton体系对p-ASA去除机制(FeS2与H2O2反应产生·OH将p-ASA降解为As(Ⅴ),一部分As(Ⅴ)被FeS2氧化产生的FeOOH直接吸附,一部分As(Ⅴ)通过调节pH与Fe(Ⅲ)共沉淀)[41]
Figure 3. Removal mechanism of p-ASA by heterogeneous Fenton system
图 4 Fe3O4@RGO三维复合材料对ROX有机-无机协同吸附机制,吸附容量及残余砷浓度[70]
Figure 4. Organic-inorganic synergetic mechanism of ROX adsorption on Fe3O4@RGO and the corresponding adsorption capacity and residual As contents.
图 5 UiO-67-(NH2)2对p-ASA的协同吸附机制,吸附容量及残余砷浓度[71]
Figure 5. Synergetic mechanism of p-ASA adsorption on UiO-67-(NH2)2 and the corresponding adsorption capacity and residual As contents.
图 6 缺陷协同氢键强化重金属配位机制,对低浓度p-ASA的吸附容量,去除率及在不同DOM浓度下砷的残余浓度[72]
Figure 6. Synergetic mechanism of defects and hydrogen bonds on As—O—Zr coordination for p-ASA adsorption by UiO-66-D-NH2 and the corresponding adsorption capacity, removal rate, and the residual As contents with different DOM concentrations
表 1 AOC类饲料添加剂的物化性质及用量
Table 1. Physicochemical property and dosage of AOC feed additives.
续表1 添加剂种类
Additivies分子式
Molecular formula化学结构
Chemical structure电离常数
pKa用量/(mg·kg−1)
Dosage参考文献
References硝苯胂酸
NITC6H6AsNO5 pKa1 = 2.20
pKa2 = 7.78375 [13] 表 2 降解法对AOCs的去除效果
Table 2. Degradation effects of AOCs via various methods.
降解方法
Degradation method去除原理
Degradation mechanismAOCs降解率
Degradation rate优势及不足 紫外/可见光降解 光引发产生活性氧自由基(1O2、·OH等)攻击AOCs结构中的As-C键,降解产生无机砷和芳香族有机物 >90% 可用于研究AOCs在环境中的降解过程;产生的无机砷毒性更强 氧化光降解 H2O2、O3、PMS、PDS等强氧化剂在紫外/可见光下产生活性氧自由基,攻击AOCs结构中的As-C键 可达100% 降解率高于紫外/可见光降解;需要沉淀、吸附等方式进一步去除产生的无机砷 光催化氧化 TiO2等光催化剂催化产生的·OH引发AOCs结构中As-C键的断裂 可达100% 降解率高,可在一定程度上同步吸附产生的无机砷;不同的催化剂吸附效果相差较大 均相Feton降解 Fe(II)催化产生的·OH使AOCs结构中As-C键氧化断裂,产生无机砷和芳香族有机物 可达100% 降解率高;pH适用范围范围较窄,后续需通过调控pH进一步去除无机砷 类Feton降解 过硫酸盐等催化剂催化产生SO4-、·OH和O2·-等多种自由基降解AOCs 90%—100% pH适用范围广;后续需通过吸附进一步去除无机砷 非均相Feton降解 铁氧化物及硫化物催化产生·OH降解AOCs >98% 可实现AOCs的高效降解和无机砷的同步去除;pH适用范围范围较窄 高铁酸盐氧化 氧原子从Fe(VI)转移到AOCs,降解产生无机砷和羟基化有机物 >99% 材料用量少,可实现AOCs的降解-吸附同步去除;受磷酸盐等阴离子影响较大 表 3 各种吸附作用力对AOCs的吸附效果
Table 3. Adsorption effects of AOCs via various adsorption interactions.
吸附作用力
Interactions吸附材料
Adsorption materialsAOCs种类
AOC types浓度/(mg·L−1)
Concentrationsqm/
(mg·g−1)kL/
(L·g−1)参考文献 取向力 多壁碳纳米管(MWCNTs) ROX 40 10 — [51] 静电引力 交联壳聚糖材料(CG) ROX — 490 24 [52] 静电引力 ZIF-8 p-ASA 3—350 790 32 [53] 孔沉积 磁性碳基复合物 5—500 588 63 [54] 氢键 MIL-101(OH)3 p-ASA, PAA 25—100 238
13952
53[55] 氢键 氨基纳米纤维素 ROX 5—100 366 [56] 氢键 NH2-MIL-68(In) p-ASA 5—400 402 55 [57] As-O-Fe/Mn配位 介孔MnFe2O4 p-ASA, ROX 10—400 59
51— [61] As-O-Fe配位 花状CoFe2O4 p-ASA 5—30 46 1640 [62] As-O-Zr配位 水合锆氧化物 p-ASA 0—100 45 41 [63] As-O-Fe配位 MIL-88A(Fe) p-ASA, ROX 1—150 262
428— [65] As-O-Zr配位 缺陷UiO-66 ROX 10—200 780 113 [66] As-O-Zn配位+氢键 BUC-10 p-ASA, ROX 10—300 937
738— [68] As-O-Fe配位+氢键+静电+π-π MIL-88A(Fe) p-ASA, ROX 1—150 147 19 [69] As-O-Fe配位+氢键+π-π Fe3O4@RGO ROX 1—100 454 780 [70] As-O-Zr配位+氢键+π-π UiO-67-(NH2)2 p-ASA 1—100 167 830 [71] As-O-Zr配位+氢键 UiO-66-D-NH2 p-ASA, ROX 1—10 98
916380
7330[72] -
[1] PODGORSKI J, BERG M. Global threat of arsenic in groundwater [J]. Science, 2020, 368(6493): 845. doi: 10.1126/science.aba1510 [2] JONES F T. A broad view of arsenic [J]. Poultry Science, 2007, 86(1): 2-14. doi: 10.1093/ps/86.1.2 [3] 李雪霞. 对饲料中大量添加有机砷制剂的思考 [J]. 云南畜牧兽医, 2008(6): 35-36. doi: 10.3969/j.issn.1005-1341.2008.06.029 LI X X. Thinking about the large amount of organic arsenic preparation added to feed [J]. Yunnan Journal of Animal Science and Veterinary Medicine, 2008(6): 35-36(in Chinese). doi: 10.3969/j.issn.1005-1341.2008.06.029
[4] P MANGALGIRI K, ADAK A, BLANEY L. Organoarsenicals in poultry litter:Detection, fate, and toxicity [J]. Environment International, 2015, 75: 68-80. doi: 10.1016/j.envint.2014.10.022 [5] SILBERGELD E K, NACHMAN K. The environmental and public health risks associated with arsenical use in animal feeds [J]. Annals of the New York Academy of Sciences, 2008, 1140: 346-357. doi: 10.1196/annals.1454.049 [6] GUPTA S K, LE X C, KACHANOSKY G, et al. Transfer of arsenic from poultry feed to poultry litter:A mass balance study [J]. Science of the Total Environment, 2018, 630: 302-307. doi: 10.1016/j.scitotenv.2018.02.123 [7] GARBARINO J R, BEDNAR A J, RUTHERFORD D W, et al. Environmental fate of roxarsone in poultry litter.I.Degradation of roxarsone during composting [J]. Environmental Science & Technology, 2003, 37(8): 1509-1514. [8] BROWN B L, SLAUGHTER A D, SCHREIBER M E. Controls on roxarsone transport in agricultural watersheds [J]. Applied Geochemistry, 2005, 20(1): 123-133. doi: 10.1016/j.apgeochem.2004.06.001 [9] FISHER D J, YONKOS L T, STAVER K W. Environmental concerns of roxarsone in broiler poultry feed and litter in Maryland, USA [J]. Environmental Science & Technology, 2015, 49(4): 1999-2012. [10] HU Y, CHENG H, TAO S, et al. China's ban on phenylarsonic feed additives, A major step toward reducing the human and ecosystem health risk from arsenic [J]. Environmental Science & Technology, 2019, 53(21): 12177-12187. [11] QIANG ZM, ADAMS C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics [J]. Water Research, 2004, 38(12): 2874-2890. doi: 10.1016/j.watres.2004.03.017 [12] JOSHI T P, ZHANG G, JEFFERSON W A, et al. Adsorption of aromatic organoarsenic compounds by ferric and manganese binary oxide and description of the associated mechanism [J]. Chemical Engineering Journal, 2017, 309: 577-587. doi: 10.1016/j.cej.2016.10.084 [13] ADAK A, MANGALGIRI K P, LEE J, et al. UV irradiation and UV-H2O2 advanced oxidation of the roxarsone and nitarsone organoarsenicals [J]. Water Research, 2015, 70: 74-85. doi: 10.1016/j.watres.2014.11.025 [14] NACHMAN K E, BARON P A, RABER G, et al. Roxarsone, inorganic arsenic, and other arsenic species in chicken:A US-based market basket sample [J]. Environmental Health Perspectives, 2013, 121(7): 818-824. doi: 10.1289/ehp.1206245 [15] LIU X, ZHANG W, HU Y, et al. Extraction and detection of organoarsenic feed additives and common arsenic species in environmental matrices by HPLC-ICP-MS [J]. Microchemical Journal, 2013, 108: 38-45. doi: 10.1016/j.microc.2012.12.005 [16] 孙永学, 陈杖榴. 有机胂添加剂的毒性、代谢及环境行为研究进展 [J]. 动物毒物学, 2004(1): 7-10. SUN Y X, CHEN Z L. Research Progress on toxicity, metabolism and environmental behavior of organic arsenic additives [J]. Journal of animal toxicology, 2004(1): 7-10(in Chinese).
[17] ARROYO-ABAD U, MATTUSCH J, MOEDER M, et al. Identification of roxarsone metabolites produced in the system:Soil-chlorinated water-light by using HPLC-ICP-MS/ESI-MS, HPLC-ESI-MS/MS and High Resolution Mass Spectrometry (ESI-TOF-MS) [J]. Journal of Analytical Atomic Spectrometry, 2011, 26(1): 171-177. doi: 10.1039/C0JA00105H [18] WANG L, CHENG H. Birnessite (δ-MnO2) mediated degradation of organoarsenic feed additive p-Arsanilic acid [J]. Environmental Science & Technology, 2015, 49(6): 3473-3481. [19] D'ANGELO E, ZEIGLER G, BECK E G, et al. Arsenic species in broiler (Gallus gallus domesticus) litter, soils, maize (Zea mays L.), and groundwater from litter-amended fields [J]. Science of the Total Environment, 2012, 438: 286-292. doi: 10.1016/j.scitotenv.2012.08.078 [20] 王克俭, 廖新俤. 猪场周围环境中砷的分布及迁移规律研究 [J]. 家畜生态学报, 2005, 26(2): 29-32. doi: 10.3969/j.issn.1673-1182.2005.02.007 WANG K J, LIAO X D. Study on the distribution and migrating disciplinavian of arsenic around the pig farm [J]. Acta Ecologiae Animalis Domastici, 2005, 26(2): 29-32(in Chinese). doi: 10.3969/j.issn.1673-1182.2005.02.007
[21] SIERRA-ALVAREZ R, CORTINAS I, FIELD J A. Methanogenic inhibition by roxarsone (4-hydroxy-3-nitrophenylarsonic acid) and related aromatic arsenic compounds [J]. Journal of Hazardous Materials, 2010, 175(1): 352-358. [22] 奚功芳. 典型有机胂在土壤-蔬菜系统中的迁移残留规律研究[D]. 芜湖: 安徽师范大学, 2014. XI G F. Study on the migration and residue of typical organoarsenic in soil vegetable system[D].Wuhu: Anhui Normal University, 2014(in Chinese).
[23] HU Y, ZHANG W, CHENG H, et al. Public health risk of arsenic species in chicken tissues from live poultry markets of Guangdong Province, China [J]. Environmental Science & Technology, 2017, 51(6): 3508-3517. [24] ZHU X, WANG Y, LIU C, et al. Kinetics, intermediates and acute toxicity of arsanilic acid photolysis [J]. Chemosphere, 2014, 107: 274-281. doi: 10.1016/j.chemosphere.2013.12.060 [25] LI S, XU J, CHEN W, et al. Multiple transformation pathways of p-arsanilic acid to inorganic arsenic species in water during UV disinfection [J]. Journal of Environmental Sciences, 2016, 47: 39-48. doi: 10.1016/j.jes.2016.01.017 [26] XIE X, HU Y, CHENG H. Mechanism, kinetics, and pathways of self-sensitized sunlight photodegradation of phenylarsonic compounds [J]. Water Research, 2016, 96: 136-147. doi: 10.1016/j.watres.2016.03.053 [27] LIU X, ZHANG W, HU Y, et al. Arsenic pollution of agricultural soils by concentrated animal feeding operations (CAFOs) [J]. Chemosphere, 2015, 119: 273-281. doi: 10.1016/j.chemosphere.2014.06.067 [28] CZAPLICKA M, BRATEK A, JAWOREK K, et al. Photo-oxidation of p-arsanilic acid in acidic solutions: Kinetics and the identification of by-products and reaction pathways [J]. Chemical Engineering Journal, 2014, 243: 364-371. doi: 10.1016/j.cej.2014.01.016 [29] CZAPLICKA M, JAWOREK K, BĄK M. Study of photodegradation and photooxidation of p-arsanilic acid in water solutions at pH = 7:Kinetics and by-products [J]. Environmental Science and Pollution Research, 2015, 22(21): 16927-16935. doi: 10.1007/s11356-015-4890-z [30] CHEN L, LI H, QIAN J. Degradation of roxarsone in UV-based advanced oxidation processes: A comparative study [J]. Journal of Hazardous Materials, 2020: 124558. [31] XU T, KAMAT P V, JOSHI S, et al. Hydroxyl radical mediated degradation of phenylarsonic acid [J]. The Journal of Physical Chemistry A, 2007, 111(32): 7819-7824. doi: 10.1021/jp072135y [32] ZHENG S, CAI Y, O'SHEA K E. TiO2 photocatalytic degradation of phenylarsonic acid [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 210(1): 61-68. doi: 10.1016/j.jphotochem.2009.12.004 [33] DENG Y, TANG L, ZENG G, et al. Enhanced visible light photocatalytic performance of polyaniline modified mesoporous single crystal TiO2 microsphere [J]. Applied Surface Science, 2016, 387: 882-893. doi: 10.1016/j.apsusc.2016.07.026 [34] XIAO R, GAO L, WEI Z., et al Mechanistic insight into degradation of endocrine disrupting chemical by hydroxyl radical:An experimental and theoretical approach [J]. Environmental Pollution, 2017, 231: 1446-1452. doi: 10.1016/j.envpol.2017.09.006 [35] LU D, JI F, WANG W, et al. Adsorption and photocatalytic decomposition of roxarsone by TiO2 and its mechanism [J]. Environmental Science and Pollution Research, 2014, 21(13): 8025-8035. doi: 10.1007/s11356-014-2729-7 [36] MIRANDA C, SANTANDER P, MATSCHULLAT J, et al. Degradation of organoarsenicals by heterogeneous photocatalysis using ZnO, TiO2 and UVA [J]. Journal of Advanced Oxidation Technologies, 2016, 19(2): 276-283. [37] MENG J, XU F, YUAN S, et al. Photocatalytic oxidation of roxarsone using riboflavin-derivative as a photosensitizer [J]. Chemical Engineering Journal, 2019, 355: 130-136. doi: 10.1016/j.cej.2018.08.127 [38] QIN J, LI H, LIN C. Fenton process-affected transformation of roxarsone in paddy rice soils:Effects on plant growth and arsenic accumulation in rice grain [J]. Ecotoxicology and Environmental Safety, 2016, 130: 4-10. doi: 10.1016/j.ecoenv.2016.03.047 [39] XIE X, HU Y, CHENG H. Rapid degradation of p-arsanilic acid with simultaneous arsenic removal from aqueous solution using Fenton process [J]. Water Research, 2016, 89: 59-67. doi: 10.1016/j.watres.2015.11.037 [40] LIU Y, HU P, ZHENG J, et al. Utilization of spent aluminum for p-arsanilic acid degradation and arsenic immobilization mediated by Fe(Ⅱ) under aerobic condition [J]. Chemical Engineering Journal, 2016, 297: 45-54. doi: 10.1016/j.cej.2016.03.092 [41] CHEN S, DENG J, YE C, et al. Simultaneous removal of Para-arsanilic acid and the released inorganic arsenic species by CuFe2O4 activated peroxymonosulfate process [J]. Science of the Total Environment, 2020, 742: 140587. doi: 10.1016/j.scitotenv.2020.140587 [42] CHEN C, LIU L, LI Y, et al. Efficient degradation of roxarsone and simultaneous in-situ adsorption of secondary inorganic arsenic by a combination of Co3O4-Y2O3 and peroxymonosulfate [J]. Journal of Hazardous Materials, 2021, 407: 124559. doi: 10.1016/j.jhazmat.2020.124559 [43] ZHAO Z, PAN S, YE Y, et al. FeS2/H2O2 mediated water decontamination from p-arsanilic acid via coupling oxidation, adsorption and coagulation: Performance and mechanism [J]. Chemical Engineering Journal, 2020, 381: 122667. doi: 10.1016/j.cej.2019.122667 [44] LI B, WEI D, LI Z., et al Mechanistic insights into the enhanced removal of roxsarsone and its metabolites by a sludge-based, biochar supported zerovalent iron nanocomposite:Adsorption and redox transformation [J]. Journal of Hazardous Materials, 2020, 389: 122091. doi: 10.1016/j.jhazmat.2020.122091 [45] YANG T, WANG L, LIU Y., et al Removal of organoarsenic with ferrate and ferrate resultant nanoparticles:Oxidation and adsorption [J]. Environmental Science & Technology, 2018, 52(22): 13325-13335. [46] YANG T, LIU Y, WANG L, et al. Highly effective oxidation of roxarsone by ferrate and simultaneous arsenic removal with in situ formed ferric nanoparticles [J]. Water Research, 2018, 147: 321-330. doi: 10.1016/j.watres.2018.10.012 [47] XIE X, CHENG H. A simple treatment method for phenylarsenic compounds: Oxidation by ferrate (VI) and simultaneous removal of the arsenate released with in situ formed Fe(Ⅲ) oxide-hydroxide [J]. Environment International, 2019, 127: 730-741. doi: 10.1016/j.envint.2019.03.059 [48] XIE X, ZHAO W, HU Y, et al. Permanganate oxidation and ferric ion precipitation (KMnO4-Fe(Ⅲ)) process for treating phenylarsenic compounds [J]. Chemical Engineering Journal, 2019, 357: 600-610. doi: 10.1016/j.cej.2018.09.194 [49] YANG K, XING B. Adsorption of organic compounds by carbon nanomaterials in aqueous phase:Polanyi theory and its application [J]. Chemical Reviews, 2010, 110(10): 5989-6008. doi: 10.1021/cr100059s [50] CAO Q, HUANG F, ZHUANG Z, et al. A study of the potential application of nano-Mg(OH)2 in adsorbing low concentrations of uranyl tricarbonate from water [J]. Nanoscale, 2012, 4(7): 2423-2430. doi: 10.1039/c2nr11993e [51] HU J, TONG Z, HU Z., et al Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes [J]. Journal of Colloid and Interface Science, 2012, 377(1): 355-361. doi: 10.1016/j.jcis.2012.03.064 [52] POON L, YOUNUS S, WILSON L D. Adsorption study of an organo-arsenical with chitosan-based sorbents [J]. Journal of Colloid and Interface Science, 2014, 420: 136-144. doi: 10.1016/j.jcis.2014.01.003 [53] JUNG B K, JUN J W, HASAN Z, et al. Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8 [J]. Chemical Engineering Journal, 2015, 267: 9-15. doi: 10.1016/j.cej.2014.12.093 [54] ZHU X, QIAN F, LIU Y, et al. Environmental performances of hydrochar-derived magnetic carbon composite affected by its carbonaceous precursor [J]. RSC Advances, 2015, 5(75): 60713-60722. doi: 10.1039/C5RA07339A [55] SARKER M, SONG J Y, JHUNG S H. Adsorption of organic arsenic acids from water over functionalized metal-organic frameworks [J]. Journal of Hazardous Materials, 2017, 335: 162-169. doi: 10.1016/j.jhazmat.2017.04.044 [56] LIU K, HUANG Z, DAI J, et al. Fabrication of amino-modified electrospun nanofibrous cellulose membrane and adsorption for typical organoarsenic contaminants: Behavior and mechanism [J]. Chemical Engineering Journal, 2020, 382: 122775. doi: 10.1016/j.cej.2019.122775 [57] LV Y, ZHANG R, ZENG S, et al. Removal of p-arsanilic acid by an amino-functionalized indium-based metal-organic framework: Adsorption behavior and synergetic mechanism [J]. Chemical Engineering Journal, 2018, 339: 359-368. doi: 10.1016/j.cej.2018.01.139 [58] CHEN W, HUANG C. Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides [J]. Journal of Hazardous Materials, 2012, 227-228: 378-385. doi: 10.1016/j.jhazmat.2012.05.078 [59] MITCHELL W, GOLDBERG S, AL-ABADLEH H A. In situ ATR-FTIR and surface complexation modeling studies on the adsorption of dimethylarsinic acid and p-arsanilic acid on iron-(oxyhydr)oxides [J]. Journal of Colloid and Interface Science, 2011, 358(2): 534-540. doi: 10.1016/j.jcis.2011.02.040 [60] CAO S, ZHANG X, HUANG X, et al. Insights into the facet-dependent adsorption of phenylarsonic acid on hematite nanocrystals [J]. Environmental Science: Nano, 2019, 6(11): 3280-3291. doi: 10.1039/C9EN00879A [61] HU Q, LIU Y, GU X, et al. Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles [J]. Chemosphere, 2017, 181: 328-336. doi: 10.1016/j.chemosphere.2017.04.049 [62] LIU J, LI B, WANG G, et al. Facile synthesis of flower-like CoFe2O4 particles for efficient sorption of aromatic organoarsenicals from aqueous solution [J]. Journal of Colloid and Interface Science, 2020, 568: 63-75. doi: 10.1016/j.jcis.2020.02.004 [63] ZHAO Z, WU P, FANG Z, et al. Selective sequestration of p-arsanilic acid from water by using nano-hydrated zirconium oxide encapsulated inside hyper-cross-linked anion exchanger [J]. Chemical Engineering Journal, 2020, 391: 123624. doi: 10.1016/j.cej.2019.123624 [64] JUN J, TONG M, JUNG B K, et al. Effect of Central Metal Ions of Analogous Metal-Organic Frameworks on Adsorption of Organoarsenic Compounds from Water:Plausible Mechanism of Adsorption and Water Purification [J]. Chemistry-A European Journal, 2015, 21(1): 347-354. doi: 10.1002/chem.201404658 [65] PANG D, WANG C, WANG P, et al. Superior removal of inorganic and organic arsenic pollutants from water with MIL-88A(Fe) decorated on cotton fibers [J]. Chemosphere, 2020, 254: 126829. doi: 10.1016/j.chemosphere.2020.126829 [66] LI B, ZHU X, HU K, et al. Defect creation in metal-organic frameworks for rapid and controllable decontamination of roxarsone from aqueous solution [J]. Journal of Hazardous Materials, 2016, 302: 57-64. doi: 10.1016/j.jhazmat.2015.09.040 [67] ARTS D, ABDUS SABUR M, AL-ABADLEH H A. Surface interactions of aromatic organoarsenical compounds with hematite nanoparticles using ATR-FTIR:Kinetic studies [J]. The Journal of Physical Chemistry A, 2013, 117(10): 2195-2204. doi: 10.1021/jp311569m [68] WANG C, ZHANG X, WANG J, et al. A new one-dimensional coordination polymer synthesized from zinc and guanazole: Superior capture of organic arsenics [J]. Applied Organometallic Chemistry, 2020, 34(6): e5637. [69] LIU B, LIU Z, WU H, et al. Effective and simultaneous removal of organic/inorganic arsenic using polymer-based hydrated iron oxide adsorbent:Capacity evaluation and mechanism [J]. Science of the Total Environment, 2020, 742: 140508. doi: 10.1016/j.scitotenv.2020.140508 [70] TIAN C, ZHAO J, ZHANG J, et al. Enhanced removal of roxarsone by Fe3O4@3D graphene nanocomposites: Synergistic adsorption and mechanism [J]. Environmental Science: Nano, 2017, 4(11): 2134-2143. doi: 10.1039/C7EN00758B [71] TIAN C, ZHAO J, OU X, et al. Enhanced adsorption of p-arsanilic acid from water by amine-modified UiO-67 as examined using extended X-ray absorption fine structure, X-ray photoelectron spectroscopy, and density functional theory calculations [J]. Environmental Science & Technology, 2018, 52(6): 3466-3475. [72] XU Y, LV J, SONG Y, et al. Efficient removal of low-concentration organoarsenic by Zr-based metal-organic frameworks:Cooperation of defects and hydrogen bonds [J]. Environmental Science:Nano, 2019, 6(12): 3590-3600. doi: 10.1039/C9EN00923J [73] FISHER E, DAWSON A M, POLSHYNA G, et al. Transformation of inorganic and organic arsenic by alkaliphilus oremlandiisp. Nov. Strain OhILAs [J]. Annals of the New York Academy of Sciences, 2008, 1125(1): 230-241. doi: 10.1196/annals.1419.006 [74] HAN J, ZHANG F, CHENG L, et al. Rapid release of arsenite from roxarsone bioreduction by exoelectrogenic bacteria [J]. Environmental Science & Technology Letters, 2017, 4(8): 350-355. [75] STOLZ J F, PERERA E, KILONZO B, et al. Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species [J]. Environmental Science & Technology, 2007, 41(3): 818-823. [76] GUZMÁN-FIERRO V G, MORAGA R, LEÓN C G, et al. Isolation and characterization of an aerobic bacterial consortium able to degrade roxarsone [J]. International Journal of Environmental Science and Technology, 2015, 12(4): 1353-1362. doi: 10.1007/s13762-014-0512-4 [77] FU Q L, LIU C, ACHAL V, et al. Aromatic arsenical additives (AAAs) in the soil environment: Detection, environmental behaviors, toxicities, and remediation [J]. Advances in Agronomy, 2016, 140: 1-41.