-
全球有近30亿人仍然依靠传统的固体燃料烹饪和取暖,而且大多数集中在发展中国家,特别是收入相对较低的农村地区[1]。民用固体燃料的低效燃烧会产生大量的空气污染物,如CO、颗粒物(particulate matter,PM)、多环芳烃(polycyclic aromatic hydrocarbons,PAHs)等,不仅会严重影响家庭环境,也会对室外环境造成污染[2-3]。但在许多空气污染研究中,相对于工厂和车辆排放等有代表性的人为污染源,民用固体燃料燃烧排放的家庭环境空气颗粒物污染常常被忽视[4]。固体燃料燃烧造成的家庭空气污染(household air pollution,HAP)是导致发展中国家重大疾病风险因素之一[5]。据估计,由固体燃料燃烧引起的家庭空气污染每年造成280万人死亡[6]。20世纪80年代以来,中国城镇化的快速发展导致民用固体燃料使用比例下降,但2012年中国家庭使用固体燃料烹饪和取暖的比例仍分别为43%和30%[7]。尽管人们普遍认为,固体燃料燃烧造成的家庭空气污染主要影响发展中国家,但美国人口普查局调查的数据显示,美国有650万人主要以木材或煤炭取暖[8]。由于民用固体燃料的广泛使用在很大程度上加剧了HAP。
近年来,民用固体燃料燃烧排放PM的相关研究逐渐受到关注,以对人体危害较大的细颗粒物(PM2.5)研究为主。许多流行病学研究已经证实,持续暴露于高浓度的细颗粒物中,与各种呼吸系统和心血管疾病的人类健康风险密切相关[9-11]。然而,目前对民用固体燃料燃烧排放的家庭环境空气颗粒物、暴露风险和排放控制研究等方面,还存在许多不足之处。本文针对民用固体燃料燃烧中家庭环境空气颗粒物排放相关研究进行整理。综述了民用固体燃料燃烧中PM的形成机理;分析了民用燃料和炉灶类型对家庭环境空气颗粒物的影响;归纳了民用固体燃料燃烧排放的家庭环境空气颗粒物的暴露风险研究;讨论了目前家庭环境空气颗粒物的排放控制领域存在的不足之处。
民用固体燃料燃烧排放对家庭环境空气颗粒物影响及暴露风险
Impact of household environmental particulate matter and its exposure risks from the combustion of residential solid fuels
-
摘要: 民用固体燃料燃烧时会排放大量的颗粒物(particulate matter,PM),不仅会导致严重的家庭环境空气颗粒物污染,还会带来较大的人群健康风险,因此受到了研究者的广泛关注。然而,民用固体燃料燃烧排放对家庭环境空气的影响研究还相对较少,尤其是家庭环境空气中颗粒物来源及人体暴露风险研究方面。本文综述了民用固体燃料燃烧中PM的形成机理,分析了民用燃料和炉灶类型对家庭环境空气颗粒物的影响,归纳了民用固体燃料燃烧排放的家庭环境空气颗粒物暴露风险研究,最后探讨了民用固体燃料燃烧排放控制研究的不足之处。Abstract: Large amounts of particulate matter (PM) are emitted from the combustion of residential solid fuels. It will not only cause serious pollution of household environment particles, but also bring greater health risks to the population, which has attracted extensive attentions of researchers. However, there are few studies about the impact of the household environment emission from the combustion of residential solid fuels, especially the researches on sources of particulate matter and human exposure risks in household environment. This review summarized the formation mechanism of particulate matter from the combustion of residential solid fuels, analyzed the impact of residential fuels and stove type on household environmental particulate matter, and generalized the exposure risks of household environmental particulate matter emitted from the combustion of residential solid fuels. Finally, the deficiencies of the researches on emission control of residential solid fuels combustion are discussed.
-
Key words:
- residential solid fuel /
- household environment /
- particulate matter /
- exposure risks /
- emissions control
-
表 1 在民用固体燃料燃烧暴露风险研究中采用固定式采样器测量的PM环境暴露值
Table 1. The PM environmental exposure value measured by a fixed sampler in the exposure risks study of residential solid fuel combustion
地点
Location采样仪器
Sampling instrument燃料类型
Fuel type炉灶类型
Stove type监测点
Monitoring
locationPM(环境浓度)
PM (Environmental
concentration)发表年份
Year of
publication参考文献
References浓度/(μg·m−3)
Concentration粒径
Particle size中国江苏 Minivol-Air Metrics 水稻杆 带烟囱炉灶 室内 114.3 PM2.5 2009年 [51] 木柴 87.5 中国西藏 Model 8520 DustTrak aerosol monitor 牛粪 带烟囱炉灶 室内 191 PM2.5 2015年 [46] 无烟囱炉灶 1243 希腊 Derenda LVS3.1/PMS3.1–15 木柴 壁炉 室内 62 PM10 2015年 [52] 29 PM2.5 印度 Minivol-Air Metrics 混合固体燃料 传统炉灶 室内 990.4±282.6 PM2.5 2017年 [53] 西班牙 PMS Model PCASP-X 木柴 壁炉 室内 58.3 PM10 2018年 [54] 中国云南 Minivol-TAS 煤炭 传统炉灶 室内 139.3 PM2.5 2019年 [55] 葡萄牙 DustTrak DRX 8533 木柴 壁炉 室内 319±173 PM10 2020年 [56] 柴火炉 78.5±24 表 2 在民用固体燃料燃烧暴露风险研究中采用个人便携采样器测量的PM个人暴露值
Table 2. The PM personal exposure value measured by personal portable sampler in the exposure risks study of civil solid fuel combustion
地点
Location采样仪器
Sampling
instrument燃料类型
Fuel type炉灶类型
Stove type监测点
Monitoring
locationPM(个人暴露)
PM (Personal
exposure)发表年份
Year of
publication参考文献
References浓度/(μg·m−3)
Concentration粒径
Particle size冈比亚 PM2.5 Monitor 木柴 传统炉灶 室内 144 PM2.5 2012年 [61] 木炭 85 中国四川 Personal Exposure Monitors (PEMs) 木柴 陶瓷砖烟囱炉灶 室内 61 PM2.5 2014年 [62] 秘鲁 PDR-1000 (Thermo Fisher Scientific) 木柴 传统炉灶 室内 316 PM10 2014年 [63] 245 PM2.5 中国内蒙古 Personal Exposure Monitors (PEMs) 作物残留物 炕 室内 249 PM2.5 2016年 [64] 中国四川 Personal Exposure Monitors (PEMs) 木柴 砖砌烟囱炉灶 室内 83.9 PM2.5 2016年 [64] 危地马拉 UCB-PATS (Berkeley Air) 木柴 带烟囱炉灶 室内 105.7 PM2.5 2017年 [60] 中国陕西 Personal Exposure Monitors (PEMs) 蜂窝煤 炕 室内 263.4±105.8 PM2.5 2018年 [65] 中国四川 Personal Exposure Monitors (PEMs) 木柴 传统炉灶 室内 202±99.1 PM2.5 2019年 [66] 中国云南 Shinyei-PPD42NS 煤炭 传统炉灶 室内 26.26 PM2.5 2020年 [67] 中国陕西 Personal Exposure Monitors (PEMs) 煤炭和木柴 新型炉灶 室内 205.5 PM2.5 2020年 [68] 传统炉灶 336.5 -
[1] BONJOUR S, ADAIR-ROHANI H, WOLF J, et al. Solid fuel use for household cooking: Country and regional estimates for 1980-2010 [J]. Environmental Health Perspectives, 2013, 121(7): 784-790. doi: 10.1289/ehp.1205987 [2] CLARK M L, PEEL J L, BALAKRISHNAN K, et al. Health and household air pollution from solid fuel use: The need for improved exposure assessment [J]. Environmental Health Perspectives, 2013, 121(10): 1120-1128. doi: 10.1289/ehp.1206429 [3] CHAFE Z A, BRAUER M, KLIMONT Z, et al. Household cooking with solid fuels contributes to ambient PM2.5 air pollution and the burden of disease [J]. Environmental Health Perspectives, 2014, 122(12): 1314-1320. doi: 10.1289/ehp.1206340 [4] LIU J, MAUZERALL D L, CHEN Q, et al. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source [J]. Proceedings of the National Academy of Sciences, 2016, 113(28): 7756-7761. doi: 10.1073/pnas.1604537113 [5] World Bank. The cost of air pollution: Strengthening the economic case for action[EB/OL]. [2020-12-23]. Washington, World Bank Group, 2016. http://documents.worldbank.org/curated/en/781521473177013155/The-cost-of-airpollution-strengthening-the-economic-case-for-action. [6] COHEN A J, BRAUER M, BURNETT R, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015 [J]. The Lancet, 2017, 389(10082): 1907-1918. doi: 10.1016/S0140-6736(17)30505-6 [7] DUAN X L, JIANG Y, WANG B B, et al. Household fuel use for cooking and heating in China: Results from the first Chinese Environmental Exposure-Related Human Activity Patterns Survey (CEERHAPS) [J]. Applied Energy, 2014, 136: 692-703. doi: 10.1016/j.apenergy.2014.09.066 [8] ROGALSKY D K, MENDOLA P, METTS T A, et al. Estimating the number of low-income Americans exposed to household air pollution from burning solid fuels [J]. Environmental Health Perspectives, 2014, 122(8): 806-810. doi: 10.1289/ehp.1306709 [9] SMITH K R, BRUCE N, BALAKRISHNAN K, et al. Millions dead: How do we know and what does it mean?Methods used in the comparative risk assessment of household air pollution [J]. Annual Review of Public Health, 2014, 35: 185-206. doi: 10.1146/annurev-publhealth-032013-182356 [10] APTE J S, MARSHALL J D, COHEN A J, et al. Addressing global mortality from ambient PM2.5 [J]. Environmental Science & Technology, 2015, 49(13): 8057-8066. [11] MADANIYAZI L, NAGASHIMA T, GUO Y M, et al. Projecting fine particulate matter-related mortality in East China [J]. Environmental Science & Technology, 2015, 49(18): 11141-11150. [12] 田红, 廖正祝. 生物质碳烟颗粒物生成机理研究进展 [J]. 洁净煤技术, 2017, 23(3): 7-15. TIAN H, LIAO Z Z. Progress on the formation mechanism of biomass soot particles [J]. Clean Coal Technology, 2017, 23(3): 7-15(in Chinese).
[13] JOKINIEMI J K, LIND T, HOKKINEN J, et al. Modelling and experimental results on aerosol formation, deposition and emissions in fluidized bed combustion of biomass [J]. Aerosols from biomass combustion, 2001, 28: 31-40. [14] OBAIDULLAH M, BRAM S, RUYCK J D. An overview of PM formation mechanisms from residential biomass combustion and instruments using in PM measurements [J]. International Journal of Energy and Environment, 2018, 12: 41-50. [15] OBAIDULLAH M, BRAM S, VERMA V K, et al. A review on particle emissions from small scale biomass combustion [J]. International Journal of Renewable Energy Research, 2012, 2(1): 147-159. [16] SIPPULA O, HOKKINEN J, PUUSTINEN H, et al. Particle emissions from small wood-fired district heating units [J]. Energy & Fuels, 2009, 23(6): 2974-2982. [17] STANMORE B R, BRILHAC J F, GILOT P. The oxidation of soot: A review of experiments, mechanisms and models [J]. Carbon, 2001, 39(15): 2247-2268. doi: 10.1016/S0008-6223(01)00109-9 [18] 于敦喜, 徐明厚, 易帆, 等. 燃煤过程中颗粒物的形成机理研究进展 [J]. 煤炭转化, 2004, 27(4): 7-12. doi: 10.3969/j.issn.1004-4248.2004.04.002 YU D X, XU M H, YI F, et al. A review on particle formation mechanisms during coal combustion [J]. Coal Conversion, 2004, 27(4): 7-12(in Chinese). doi: 10.3969/j.issn.1004-4248.2004.04.002
[19] HELBLE J J, SAROFIM A F. Factors determining the primary particle size of flame-generated inorganic aerosols [J]. Journal of Colloid and Interface Science, 1989, 128(2): 348-362. doi: 10.1016/0021-9797(89)90349-4 [20] GAO Q, LI S Q, YANG M M, et al. Measurement and numerical simulation of ultrafine particle size distribution in the early stage of high-sodium lignite combustion [J]. Proceedings of the Combustion Institute, 2017, 36(2): 2083-2090. doi: 10.1016/j.proci.2016.07.085 [21] XIAO Z H, SHANG T K, ZHUO J K, et al. Study on the mechanisms of ultrafine particle formation during high-sodium coal combustion in a flat-flame burner [J]. Fuel, 2016, 181: 1257-1264. doi: 10.1016/j.fuel.2016.01.033 [22] LONG C M, SUH H H, KOUTRAKIS P. Characterization of indoor particle sources using continuous mass and size monitors [J]. Journal of the Air & Waste Management Association, 2000, 50(7): 1236-1250. [23] WANG S X, WEI W, LI D, et al. Air pollutants in rural homes in Guizhou, China - Concentrations, speciation, and size distribution [J]. Atmospheric Environment, 2010, 44(36): 4575-4581. doi: 10.1016/j.atmosenv.2010.08.013 [24] WU F Y, LIU X P, WANG W, et al. Characterization of particulate-bound PAHs in rural households using different types of domestic energy in Henan Province, China [J]. Science of the Total Environment, 2015, 536: 840-846. doi: 10.1016/j.scitotenv.2015.07.101 [25] JIN Y L, MA X, CHEN X N, et al. Exposure to indoor air pollution from household energy use in rural China: The interactions of technology, behavior, and knowledge in health risk management [J]. Social Science & Medicine, 2006, 62(12): 3161-3176. [26] DHAMMAPALA R, CLAIBORN C, CORKILL J, et al. Particulate emissions from wheat and Kentucky bluegrass stubble burning in eastern Washington and northern Idaho [J]. Atmospheric Environment, 2006, 40(6): 1007-1015. doi: 10.1016/j.atmosenv.2005.11.018 [27] MCMEEKING G R, KREIDENWEIS S M, BAKER S, et al. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory [J]. Journal of Geophysical Research, 2009, 114(D19): D19210. doi: 10.1029/2009JD011836 [28] SIMONEIT B R T. Biomass burning—a review of organic tracers for smoke from incomplete combustion [J]. Applied Geochemistry, 2002, 17(3): 129-162. doi: 10.1016/S0883-2927(01)00061-0 [29] SHEN G F, WEI S Y, WEI W, et al. Emission factors, size distributions, and emission inventories of carbonaceous particulate matter from residential wood combustion in rural China [J]. Environmental Science & Technology, 2012, 46(7): 4207-4214. [30] LUI K H, CHAN C S, TIAN L W, et al. Elements in fine particulate matter (PM2.5) from indoor air during household stoves coal combustion at Xuanwei, China [J]. Aerosol Science and Engineering, 2017, 1(1): 41-50. doi: 10.1007/s41810-017-0004-2 [31] ZHU C S, CAO J J, SHEN Z X, et al. Indoor and outdoor chemical components of PM2.5 in the rural areas of Northwestern China [J]. Aerosol and Air Quality Research, 2012, 12(6): 1157-1165. doi: 10.4209/aaqr.2012.01.0003 [32] WU F Y, WANG W, MAN Y B, et al. Levels of PM2.5/PM10 and associated metal(loid)s in rural households of Henan Province, China [J]. Science of the Total Environment, 2015, 512/513: 194-200. doi: 10.1016/j.scitotenv.2015.01.041 [33] LI T X, CAO S Z, FAN D L, et al. Household concentrations and personal exposure of PM2.5 among urban residents using different cooking fuels [J]. Science of the Total Environment, 2016, 548/549: 6-12. doi: 10.1016/j.scitotenv.2016.01.038 [34] SHEN G F, WEI S Y, ZHANG Y Y, et al. Emission and size distribution of particle-bound polycyclic aromatic hydrocarbons from residential wood combustion in rural China [J]. Biomass and Bioenergy, 2013, 55: 141-147. doi: 10.1016/j.biombioe.2013.01.031 [35] HATA M, CHOMANEE J, THONGYEN T, et al. Characteristics of nanoparticles emitted from burning of biomass fuels [J]. Journal of Environmental Sciences, 2014, 26(9): 1913-1920. doi: 10.1016/j.jes.2014.07.005 [36] SONG W H, CAO F, LIN Y C, et al. Extremely high abundance of polycyclic aromatic hydrocarbons in aerosols from a typical coal-combustion rural site in China: Size distribution, source identification and cancer risk assessment [J]. Atmospheric Research, 2021, 248: 105192. doi: 10.1016/j.atmosres.2020.105192 [37] VENKATARAMAN C, NEGI G, BRATA SARDAR S, et al. Size distributions of polycyclic aromatic hydrocarbons in aerosol emissions from biofuel combustion [J]. Journal of Aerosol Science, 2002, 33(3): 503-518. doi: 10.1016/S0021-8502(01)00185-9 [38] ZHANG J D, LIU W J, XU Y S, et al. Distribution characteristics of and personal exposure with polycyclic aromatic hydrocarbons and particulate matter in indoor and outdoor air of rural households in Northern China [J]. Environmental Pollution, 2019, 255: 113176. doi: 10.1016/j.envpol.2019.113176 [39] SHEN G F, WANG W, YANG Y F, et al. Emission factors and particulate matter size distribution of polycyclic aromatic hydrocarbons from residential coal combustions in rural Northern China [J]. Atmospheric Environment, 2010, 44(39): 5237-5243. doi: 10.1016/j.atmosenv.2010.08.042 [40] 陈颖军. 家用蜂窝煤燃烧烟气中碳颗粒物和多环芳烃的排放特征[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2004. CHEN Y J. Emission characteristics of carbonaceous particulate and polycyclic aromatic hydrocarbons from residential honeycomb-coal-briquette combustion[D]. Guangzhou: University of Chinese Academy of Sciences(Guangzhou Institute of Geochemistry), 2004(in Chinese).
[41] 杨国威, 孔少飞, 郑淑睿, 等. 民用燃煤排放分级颗粒物中碳组分排放因子 [J]. 环境科学, 2018, 39(8): 3524-3534. YANG G W, KONG S F, ZHENG S R, et al. Size-resolved emission factors of carbonaceous particles from domestic coal combustion in China [J]. Environmental Science, 2018, 39(8): 3524-3534(in Chinese).
[42] 符海欢, 田娜, 商惠斌, 等. 模拟不同排放源排放颗粒及多环芳烃的粒径分布研究 [J]. 环境科学, 2014, 35(1): 46-52. FU H H, TIAN N, SHANG H B, et al. Size distribution of particle and polycyclic aromatic hydrocarbons in particle emissions from simulated emission sources [J]. Environmental Science, 2014, 35(1): 46-52(in Chinese).
[43] 沈潇雨, 郭照冰, 姜文娟, 等. 生物质室内燃烧产物的碳质特征及EC同位素组成 [J]. 中国环境科学, 2017, 37(10): 3669-3674. doi: 10.3969/j.issn.1000-6923.2017.10.007 SHEN X Y, GUO Z B, JIANG W J, et al. Carbon characteristics and elemental carbon isotopic compositions in biomass indoor combustion products [J]. China Environmental Science, 2017, 37(10): 3669-3674(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.10.007
[44] 沈国锋. 室内固体燃料燃烧产生的碳颗粒物和多环芳烃的排放因子及影响因素[D]. 北京: 北京大学, 2012. SHEN G F. Emission factors of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from residential solid fuel combustions[D]. Beijing: Peking University, 2012(in Chinese).
[45] 刘亚男, 钟连红, 闫静, 等. 民用燃料燃烧碳质组分及VOCs排放特征 [J]. 中国环境科学, 2019, 39(4): 1412-1418. doi: 10.3969/j.issn.1000-6923.2019.04.008 LIU Y N, ZHONG L H, YAN J, et al. Carbon compositions and VOCs emission characteristics of civil combustion fuels [J]. China Environmental Science, 2019, 39(4): 1412-1418(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.04.008
[46] XIAO Q Y, SAIKAWA E, YOKELSON R J, et al. Indoor air pollution from burning yak dung as a household fuel in Tibet [J]. Atmospheric Environment, 2015, 102: 406-412. doi: 10.1016/j.atmosenv.2014.11.060 [47] MURALIDHARAN V, SUSSAN T E, LIMAYE S, et al. Field testing of alternative cookstove performance in a rural setting of western India [J]. International Journal of Environmental Research and Public Health, 2015, 12(2): 1773-1787. doi: 10.3390/ijerph120201773 [48] JETTER J, ZHAO Y X, SMITH K R, et al. Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards [J]. Environmental Science & Technology, 2012, 46(19): 10827-10834. [49] JUST B, ROGAK S, KANDLIKAR M. Characterization of ultrafine particulate matter from traditional and improved biomass cookstoves [J]. Environmental Science & Technology, 2013, 47(7): 3506-3512. [50] WHO. Exposure to air pollution: a major public health concern[EB/OL]. [2020-12-8]. Public health and environment, 2010: 1–6.https://www.who.int/ipcs/features/air_pollution.pdf [51] 顾庆平, 高翔, 陈洋, 等. 江苏农村地区室内PM2.5浓度特征分析 [J]. 复旦学报(自然科学版), 2009, 48(5): 593-597. GU Q P, GAO X, CHEN Y, et al. The mass concentration characters of indoor PM2.5 in rural areas in Jiangsu Province [J]. Journal of Fudan University (Natural Science), 2009, 48(5): 593-597(in Chinese).
[52] SARAGA D E, MAKROGKIKA A, KARAVOLTSOS S, et al. A pilot investigation of PM indoor/outdoor mass concentration and chemical analysis during a period of extensive fireplace use in Athens [J]. Aerosol and Air Quality Research, 2015, 15(7): 2485-2495. doi: 10.4209/aaqr.2015.02.0100 [53] MATAWLE J L, PERVEZ S, SHRIVASTAVA A, et al. PM2.5 pollution from household solid fuel burning practices in central India: 1. Impact on indoor air quality and associated health risks [J]. Environmental Geochemistry and Health, 2017, 39(5): 1045-1058. doi: 10.1007/s10653-016-9871-8 [54] CASTRO A, CALVO A I, BLANCO-ALEGRE C, et al. Impact of the wood combustion in an open fireplace on the air quality of a living room: Estimation of the respirable fraction [J]. Science of the Total Environment, 2018, 628/629: 169-176. doi: 10.1016/j.scitotenv.2018.02.001 [55] 吴凡, 邵龙义, 鲁静, 等. 宣威市冬季室内PM2.5中水溶性无机离子污染特征 [J]. 环境工程技术学报, 2019, 9(5): 538-543. doi: 10.12153/j.issn.1674-991X.2019.03.220 WU F, SHAO L Y, LU J, et al. Characteristics of the water-soluble inorganic ions of indoor PM2.5 in Xuanwei City in winter [J]. Journal of Environmental Engineering Technology, 2019, 9(5): 538-543(in Chinese). doi: 10.12153/j.issn.1674-991X.2019.03.220
[56] VICENTE E D, VICENTE A M, EVTYUGINA M, et al. Impact of wood combustion on indoor air quality [J]. Science of the Total Environment, 2020, 705: 135769. doi: 10.1016/j.scitotenv.2019.135769 [57] HUANG Y, DU W, CHEN Y C, et al. Household air pollution and personal inhalation exposure to particles (TSP/PM2.5/PM1.0/PM0.25) in rural Shanxi, North China [J]. Environmental Pollution, 2017, 231: 635-643. doi: 10.1016/j.envpol.2017.08.063 [58] DU W, SHEN G F, CHEN Y C, et al. Wintertime pollution level, size distribution and personal daily exposure to particulate matters in the northern and southern rural Chinese homes and variation in different household fuels [J]. Environmental Pollution, 2017, 231: 497-508. doi: 10.1016/j.envpol.2017.08.039 [59] BAUMGARTNER J, SCHAUER J J, EZZATI M, et al. Patterns and predictors of personal exposure to indoor air pollution from biomass combustion among women and children in rural China [J]. Indoor Air, 2011, 21(6): 479-488. doi: 10.1111/j.1600-0668.2011.00730.x [60] WEINSTEIN J R, ASTERIA-PEÑALOZA R, DIAZ-ARTIGA A, et al. Exposure to polycyclic aromatic hydrocarbons and volatile organic compounds among recently pregnant rural Guatemalan women cooking and heating with solid fuels [J]. International Journal of Hygiene and Environmental Health, 2017, 220(4): 726-735. doi: 10.1016/j.ijheh.2017.03.002 [61] DIONISIO K L, HOWIE S R C, DOMINICI F, et al. Household concentrations and exposure of children to particulate matter from biomass fuels in the Gambia [J]. Environmental Science & Technology, 2012, 46(6): 3519-3527. [62] SHAN M, YANG X D, EZZATI M, et al. A feasibility study of the association of exposure to biomass smoke with vascular function, inflammation, and cellular aging [J]. Environmental Research, 2014, 135: 165-172. doi: 10.1016/j.envres.2014.09.006 [63] POLLARD S L, WILLIAMS D L, BREYSSE P N, et al. A cross-sectional study of determinants of indoor environmental exposures in households with and without chronic exposure to biomass fuel smoke [J]. Environmental Health, 2014, 13(1): 21. doi: 10.1186/1476-069X-13-21 [64] SECREST M H, SCHAUER J J, CARTER E M, et al. The oxidative potential of PM2.5 exposures from indoor and outdoor sources in rural China [J]. Science of the Total Environment, 2016, 571: 1477-1489. doi: 10.1016/j.scitotenv.2016.06.231 [65] XU H M, LI Y Q, GUINOT B, et al. Personal exposure of PM2.5 emitted from solid fuels combustion for household heating and cooking in rural Guanzhong Plain, northwestern China [J]. Atmospheric Environment, 2018, 185: 196-206. doi: 10.1016/j.atmosenv.2018.05.018 [66] LAI A M, CARTER E, SHAN M, et al. Chemical composition and source apportionment of ambient, household, and personal exposures to PM2.5 in communities using biomass stoves in rural China [J]. Science of the Total Environment, 2019, 646: 309-319. doi: 10.1016/j.scitotenv.2018.07.322 [67] WU J, XIAO X, LI Y, et al. Personal exposure to fine particulate matter (PM2.5) of pregnant women during three trimesters in rural Yunnan of China [J]. Environmental Pollution, 2020, 256: 113055. doi: 10.1016/j.envpol.2019.113055 [68] 贺开来, 李娅绮, 徐红梅, 等. 家用燃料燃烧排放PM2.5的特征及其对肺功能的影响: 以陕西蓝田县为例 [J]. 环境化学, 2020, 39(2): 552-565. doi: 10.7524/j.issn.0254-6108.2019032301 HE K L, LI Y Q, XU H M, et al. Characteristics of PM2.5 emitted from domestic fuel combustion and its effect on lung function: A case study in Lantian County, Shaanxi, China [J]. Environmental Chemistry, 2020, 39(2): 552-565(in Chinese). doi: 10.7524/j.issn.0254-6108.2019032301
[69] ZHONG J J, DING J N, SU Y H, et al. Carbonaceous particulate matter air pollution and human exposure from indoor biomass burning practices [J]. Environmental Engineering Science, 2012, 29(11): 1038-1045. doi: 10.1089/ees.2011.0543 [70] LIU W J, SHEN G F, CHEN Y C, et al. Air pollution and inhalation exposure to particulate matter of different sizes in rural households using improved stoves in central China [J]. Journal of Environmental Sciences, 2018, 63: 87-95. doi: 10.1016/j.jes.2017.06.019 [71] HUANG Y, WANG J Z, FU N, et al. Inhalation exposure to size-segregated fine particles and particulate PAHs for the population burning biomass fuels in the Eastern Tibetan Plateau area [J]. Ecotoxicology and Environmental Safety, 2021, 211: 111959. doi: 10.1016/j.ecoenv.2021.111959 [72] 王军亮, 王清勤, 范东叶, 等. 北京地区办公建筑室内颗粒物质量浓度分布特征 [J]. 暖通空调, 2017, 47(5): 113-118. WANG J L, WANG Q Q, FAN D Y, et al. Particle mass concentration distribution characteristics in an office building of Beijing [J]. Heating Ventilating & Air Conditioning, 2017, 47(5): 113-118(in Chinese).
[73] ARIF M, PARVEEN S. Carcinogenic effects of indoor black carbon and particulate matters (PM2.5 and PM10) in rural households of India [J]. Environmental Science and Pollution Research, 2021, 28(2): 2082-2096. doi: 10.1007/s11356-020-10668-5 [74] HU W, DOWNWARD G S, REISS B, et al. Personal and indoor PM2.5 exposure from burning solid fuels in vented and unvented stoves in a rural region of China with a high incidence of lung cancer [J]. Environmental Science & Technology, 2014, 48(15): 8456-8464. [75] GAO X, YU Q, GU Q, et al. Indoor air pollution from solid biomass fuels combustion in rural agricultural area of Tibet, China [J]. Indoor Air, 2009, 19(3): 198-205. doi: 10.1111/j.1600-0668.2008.00579.x [76] SIDHU M K, RAVINDRA K, MOR S, et al. Household air pollution from various types of rural kitchens and its exposure assessment [J]. Science of the Total Environment, 2017, 586: 419-429. doi: 10.1016/j.scitotenv.2017.01.051 [77] SHARMA D, JAIN S. Impact of intervention of biomass cookstove technologies and kitchen characteristics on indoor air quality and human exposure in rural settings of India [J]. Environment International, 2019, 123: 240-255. doi: 10.1016/j.envint.2018.11.059 [78] RAPP V H, CAUBEL J J, WILSON D L, et al. Reducing ultrafine particle emissions using air injection in wood-burning cookstoves [J]. Environmental Science & Technology, 2016, 50(15): 8368-8374. [79] LI Q, JIANG J K, QI J, et al. Improving the energy efficiency of stoves to reduce pollutant emissions from household solid fuel combustion in China [J]. Environmental Science & Technology Letters, 2016, 3(10): 369-374. [80] DU W, SHEN G F, CHEN Y C, et al. Comparison of air pollutant emissions and household air quality in rural homes using improved wood and coal stoves [J]. Atmospheric Environment, 2017, 166: 215-223. doi: 10.1016/j.atmosenv.2017.07.029 [81] 王东滨, 郝吉明, 蒋靖坤. 民用固体燃料燃烧超细颗粒物排放及其潜在健康影响 [J]. 科学通报, 2019, 64(33): 3429-3440. WANG D B, HAO J M, JIANG J K. Ultrafine particle emission and its potential health risk from residential solid fuel combustion [J]. Chinese Science Bulletin, 2019, 64(33): 3429-3440(in Chinese).