-
我国是有机磷农药生产大国[1-3],产量约占我国农药总产量的50%—60%[4]。有机磷农药的生产一般需要几步到十几步反应,通常为过量反应[5],产品收率较低,其他原料、中间体及副产物都以“三废”形式排出[6-7],再加上农药生产需要的多种原辅料和溶剂在生产过程中难免存在跑冒滴漏的现象[8-9],这就导致农药场地污染物质存在组成复杂,识别困难的问题。另外,农药场地污染物质具有易挥发、嗅阈值低的特点[10],尤其一些退役农药场地在修复过程中,原本藏匿在土壤中具有刺激性气味的VOCs被释放出来,导致修复现场异味强烈,投诉事件频发。异味污染已成为场地修复过程中最普遍且最棘手的环境问题。
异味是一种感官污染,直接影响人民的生活质量与社会的和谐稳定[11-13]。目前国内外与农药场地相关的研究主要围绕场地健康风险评价以及修复技术研发等方面[14-16],有关异味污染的研究还比较匮乏,农药场地异味污染来源以及致臭因子尚不明晰,修复以及治理工作缺少针对性的理论指导与必要的技术支撑。本研究以有机磷农药场地为研究对象,开展场地环境空气污染调查,感官评估异味污染情况,重点分析场地挥发性异味有机物的污染分布特征、识别关键致臭物质,为该类型污染场地的有效修复治理及合理开发利用奠定基础。
某有机磷农药场地异味VOCs污染特征与关键致臭物质识别
Odour VOCs pollution characteristics and identification of key odorant in an organophosphorus pesticide site
-
摘要: 为了解有机磷农药场地修复过程中异味污染特征及产生原因,对某有机磷农药场地开展系统的场地调查。感官评估不同功能区异味污染情况,分析各区域异味VOCs组分差别,识别主要异味VOCs物质,确定各区域的关键致臭物质。结果表明,该有机磷农药场地生产区与辅助区异味污染最严重,臭气浓度、臭气强度以及TVOCs浓度水平均高于其他区域,公共区与敏感点异味污染最轻。场地主要异味VOCs组分为氯代烃以及苯及苯系物,其中氯苯、苯、二苯醚以及四氯化碳等占比较高。敏感点主要异味VOCs组分为烷烯烃与醛酮类,其中异戊烷、甲基叔丁基醚、正戊烷以及三氯甲烷等物质占比较高。各区域关键致臭物质不同,生产区关键致臭物质为辛醛与乙醛,辅助区为乙醛与乙醇,公共区为乙酸仲丁酯,厂界处为辛醛,敏感点为甲硫醚。Abstract: In order to understand the characteristics and causes of odor pollution during pesticide site remediation, a systematic site survey was carried out on an organophosphorus pesticide site. This investigation includes odor sensory evaluation in different functional areas, analysis of the differences of odorous VOCs components in each area, identification of the main odorous VOCs substances, and determining the key odorants of each area. Results showed that odor pollution of the production area and auxiliary area were the most serious. And the odor concentration, odor intensity and TVOCs concentration level were higher than other areas. The public area and sensitive point had the least odor pollution. The main odor VOCs components of the site were chlorinated hydrocarbons and benzene and benzene series, of which chlorobenzene, benzene, diphenyl ether and carbon tetrachloride were higher in content. The main components of odor VOCs at sensitive points were alkanes and aldehydes, of which isopentane, methyl tert-butyl ether, n-pentane and chloroform had a higher content. The key odorants of each area were different. The key odorants of the production area were octyl aldehyde and acetaldehyde, the auxiliary area were acetaldehyde and ethanol, the public area was sec-butyl acetate, the plant boundary was octyl aldehyde, and the sensitive point was dimethyl sulfide.
-
表 1 六级强度度量法
Table 1. The 6 point odor intensity scale
级别
Level嗅觉感受
Olfactory sensation0 无臭 1 刚刚好能感知到臭气(检知阈值) 2 微弱的臭气,但是能确定是什么样的臭气(确认阈值) 3 能够明显的感知到臭气 4 比较强烈的臭气 5 非常强烈,具有刺激性的臭气 表 2 环境空气样品检测方法
Table 2. The detection method of environmental air sample
类别
Category检测项目
Detection item检测方法
Detection method检测依据
Detection reference使用仪器
Instrument空气 物质筛查 高分辨全扫描 自主研发 ThermoFisher QEGC
气相色谱高分辨质谱联用仪热脱附-气相色谱质谱法 HJ 734-2014 Agilent7890A/5975C
气相色谱质谱联用仪挥发性有机污染物 罐采样-气相色谱质谱法 HJ 759-2015 Agilent7890A/5975C
气相色谱质谱联用仪硫化物 气袋采样-气相色谱质谱法 HJ 1078-2019 Agilent7890A/5975C
气相色谱质谱联用仪醛酮 高效液相色谱法 HJ 683-2014 Waters
高效液相色谱仪有机酸 固相微萃取-气相色谱法 自主研发 Agilent7890A
气相色谱仪有机胺 固相微萃取-气相色谱法 自主研发 Agilent7890A
气相色谱仪氨 气相色谱-NCD法 自主研发 Agilent7890B
气相色谱仪萜烯、醇类、酯类 罐采样-气相色谱质谱法 自主研发 Agilent7890A/5975C
气相色谱质谱联用仪表 3 各点位臭气强度与臭气浓度
Table 3. The odor intensity and odor concentration of each point
点位
Point所在区域
Region臭气强度
Odor intensity臭气浓度
Odor concentration1# 生产区 4 1424 2# 4 1891 3# 4.5 3050 4# 辅助区 4 1385 5# 4 1020 6# 3 422 7# 公共区 2 58 8# 2 41 9# 厂界处 3 309 10# 3 647 11# 敏感点 2 32 表 4 各区域关键致臭物质及其异味活度系数
Table 4. The key odorants and its OAV of each area
区域 Region 关键致臭物质(异味活度系数) Key odorant(OAV) 生产区 辛醛(654)、乙醛(125)、壬醛(32)、异戊二烯(2)、庚醛(2)、苯酚(2) 辅助区 乙醛(387)、乙醇(85)、庚醛(21)、丙醛(18)、己醛(15)、戊醛(8)、四氯乙烯(2) 公共区 乙酸仲丁酯(24)、异戊醇(8) 厂界处 辛醛(211)、苯酚(12)乙酸丁酯(8)、壬醛(3)、丙醛(1) 敏感点 甲硫醚(20)、乙硫醚(12)、二甲二硫醚(5)、乙醛(2) -
[1] 丁浩东, 万红友, 秦攀, 等. 环境中有机磷农药污染状况、来源及风险评价 [J]. 环境化学, 2019, 38(3): 463-479. doi: 10.7524/j.issn.0254-6108.2018051405 DING H D, WAN H Y, QIN P, et al. Occurrence, sources and risk assessment of organophosphorus pesticides in the environment, China [J]. Environmental Chemistry, 2019, 38(3): 463-479(in Chinese). doi: 10.7524/j.issn.0254-6108.2018051405
[2] 阚可聪, 谷孝鸿, 李红敏, 等. 固城湖及出入湖河道表层水体、沉积物和鱼体中有机氯农药分布及风险评估 [J]. 环境科学, 2020, 41(3): 1346-1356. KAN K C, GU X H, LI H M, et al. Distribution and risk assessment of OCPs in surface water, sediments, and fish from lake Gucheng and inflow and outflow rivers [J]. Environmental Science, 2020, 41(3): 1346-1356(in Chinese).
[3] 门晓晔. 有机磷农药污染土壤风险评估及热脱附修复研究[D]. 天津: 天津科技大学, 2016. MEN X Y. Risk assessment and thermal desorption of organophosphorus pesticide contaminated soils[D]. Tianjin: Tianjin University of Science & Technology, 2016(in Chinese).
[4] 陈锐. 基于建设用地土壤调查分析历史农用地农药潜在污染特征 [J]. 环保科技, 2020, 26(6): 57-64. doi: 10.3969/j.issn.1674-0254.2020.06.012 CHEN R. Contamination characteristics of pesticides in agricultural land transferred to development land [J]. Environmental Protection and Technology, 2020, 26(6): 57-64(in Chinese). doi: 10.3969/j.issn.1674-0254.2020.06.012
[5] 朱国繁, 应蓉蓉, 叶茂, 等. 我国农药生产场地污染土壤修复技术研究进展 [J]. 土壤通报, 2021, 52(2): 462-473. ZHU G F, YING R R, YE M, et al. Research progress on remediation technology of contaminated soil in pesticide production sites in China [J]. Chinese Journal of Soil Science, 2021, 52(2): 462-473(in Chinese).
[6] YANG K X, WANG C, XUE S, et al. The identification, health risks and olfactory effects assessment of VOCs released from the wastewater storage tank in a pesticide plant [J]. Ecotoxicology and Environmental Safety, 2019, 184: 109665. doi: 10.1016/j.ecoenv.2019.109665 [7] 李开环, 聂志强, 迭庆杞, 等. 废弃农药厂拆除过程对周边土壤DDTs污染影响 [J]. 中国环境科学, 2018, 38(2): 658-664. doi: 10.3969/j.issn.1000-6923.2018.02.030 LI K H, NIE Z Q, DIE Q Q, et al. The effect of a pesticide plant demolition on the concentration of DDTs in its surrounding soils [J]. China Environmental Science, 2018, 38(2): 658-664(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.02.030
[8] 张春玲, 杨晓文, 谷中鸣, 等. 农药生产企业废弃场地浅层土壤污染情况调查 [J]. 农药, 2014, 53(6): 460-462. ZHANG C L, YANG X W, GU Z M, et al. Investigation of shallow soil pollution in waste pesticide production enterprises [J]. Agrochemicals, 2014, 53(6): 460-462(in Chinese).
[9] 常春英, 肖荣波, 章生健, 等. 城市工业企业搬迁遗留污染场地再开发环境管理问题与思考 [J]. 生态经济, 2016, 32(8): 191-195. doi: 10.3969/j.issn.1671-4407.2016.08.039 CHANG C Y, XIAO R B, ZHANG S J, et al. The problems and thoughts on environmental management in redevelopment of contaminated sites of relocated industrial enterprises in urban centers [J]. Ecological Economy, 2016, 32(8): 191-195(in Chinese). doi: 10.3969/j.issn.1671-4407.2016.08.039
[10] CHEN J, YANG J T, PAN H, et al. Abatement of malodorants from pesticide factory in dielectric barrier discharges [J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 908-913. [11] 杨伟华, 肖咸德, 王亘, 等. 香精香料企业挥发性恶臭有机物排放特征分析 [J]. 环境化学, 2021, 40(4): 1071-1077. doi: 10.7524/j.issn.0254-6108.2020010705 YANG W H, XIAO X D, WANG G, et al. Emission characteristics of volatile odorous organic compounds in fragrance and flavor industry [J]. Environmental Chemistry, 2021, 40(4): 1071-1077(in Chinese). doi: 10.7524/j.issn.0254-6108.2020010705
[12] 邹克华, 翟增秀, 李伟芳, 等. 典型生物发酵企业挥发性有机物及恶臭污染物排放特征 [J]. 环境化学, 2020, 39(12): 3574-3580. ZOU K H, ZHAI Z X, LI W F, et al. Emission characteristics of volatile organic compounds and odorous pollutants in typical bio-fermentation industries [J]. Environmental Chemistry, 2020, 39(12): 3574-3580(in Chinese).
[13] 李佳音, 邹克华, 李伟芳, 等. 养猪场恶臭污染的预测模型及感官评估研究 [J]. 环境科学研究, 2020, 33(1): 88-93. LI J Y, ZOU K H, LI W F, et al. Prediction model and sensory evaluation of odor pollution in pig farms [J]. Research of Environmental Sciences, 2020, 33(1): 88-93(in Chinese).
[14] BHANDARI G, ATREYA K, SCHEEPERS P T J, et al. Concentration and distribution of pesticide residues in soil: Non-dietary human health risk assessment [J]. Chemosphere, 2020, 253: 126594. doi: 10.1016/j.chemosphere.2020.126594 [15] 叶凯, 孙玉川, 贾亚男, 等. 岩溶地下水水体中有机氯农药和多氯联苯的残留特征及健康风险评价 [J]. 环境科学, 2020, 41(12): 5448-5457. YE K, SUN Y C, JIA Y N, et al. Residual characteristics and health assessment analysis of OCPs and PCBs in Karst groundwater [J]. Environmental Science, 2020, 41(12): 5448-5457(in Chinese).
[16] 李倩, 杨璐, 姜越, 等. 农药生产场地污染土壤的化学氧化修复技术研究进展 [J]. 生态与农村环境学报, 2021, 37(1): 19-29. LI Q, YANG L, JIANG Y, et al. Chemical oxidation techniques for soil remediation of contamination at pesticide-production sites [J]. Journal of Ecology and Rural Environment, 2021, 37(1): 19-29(in Chinese).
[17] BIAN Y G, GONG H N, SUFFET I H M. The use of the odor profile method with an “odor patrol” panel to evaluate an odor impacted site near a landfill [J]. Atmosphere, 2021, 12(4): 472. doi: 10.3390/atmos12040472 [18] 张欢, 邹克华, 李伟芳, 等. 恶臭污染评估指标体系研究 [J]. 安全与环境学报, 2015, 15(2): 344-347. ZHANG H, ZOU K H, LI W F, et al. Renovated evaluation index system available for the odor pollution assessment [J]. Journal of Safety and Environment, 2015, 15(2): 344-347(in Chinese).
[19] LIDÉN E, NORDIN S, HÖGMAN L, et al. Assessment of odor annoyance and its relationship to stimulus concentration and odor intensity [J]. Chemical Senses, 1998, 23(1): 113-117. doi: 10.1093/chemse/23.1.113 [20] PARK S. Odor characteristics and concentration of malodorous chemical compounds emitted from a combined sewer system in Korea [J]. Atmosphere, 2020, 11(6): 667. doi: 10.3390/atmos11060667 [21] 国家技术监督局. 中华人民共和国推荐性国家标准: 空气质量 恶臭的测定 三点比较式臭袋法 GB/T 14675—1993[S]. 北京: 中国标准出版社, 1993. State Bureau of Quality and Technical Supervision of the People's Republic of China. National Standard (Recommended) of the People's Republic of China: Air quality-Determination of odor-Triangle odor bag method. GB/T 14675—1993[S]. Beijing: Standards Press of China, 1993(in Chinese).
[22] WU C D, LIU J M. Assessment of odour activity value coefficient and odour contribution bassed on binary interaction effects in a waste disposal plant[C]. 1st Austrian-Chinese Workshop on Environmental Odour. Tianjin, China, 2015. [23] YOSHIHARU I. Odor olfactory measurement[M]. Tokyo: Japan Association on Odor Environment, 2004: 20-31. [24] 王亘, 翟增秀, 耿静, 等. 40种典型恶臭物质嗅阈值测定 [J]. 安全与环境学报, 2015, 15(6): 348-351. WANG G, ZHAI Z X, GENG J, et al. Testing and determination of the olfactory thresholds of the 40 kinds of typical malodorous substances [J]. Journal of Safety and Environment, 2015, 15(6): 348-351(in Chinese).
[25] 国家环境保护局, 国家技术监督局. 中华人民共和国国家标准: 恶臭污染物排放标准 GB 14554—1993[S]. 北京: 中国标准出版社, 1994. State Bureau of Environmental Protection of the People's Republic of China, State Bureau of Quality and Technical Supervision of the People's Republic of China. National Standard (Mandatory) of the People's Republic of China: Emission STANDARDs for odor pollutants. GB 14554—1993[S]. Beijing: Standards Press of China, 1994(in Chinese).
[26] 贺小敏, 施敏芳, 李爱民, 等. 废弃农药厂土壤和地下水中有机磷农药的健康风险评价 [J]. 中国环境监测, 2014, 30(2): 76-79. doi: 10.3969/j.issn.1002-6002.2014.02.015 HE X M, SHI M F, LI A M, et al. Health risk assessment of organophosphorus pesticides contaminated soil and groundwater in an abandoned factory site [J]. Environmental Monitoring in China, 2014, 30(2): 76-79(in Chinese). doi: 10.3969/j.issn.1002-6002.2014.02.015
[27] 沈龙娇, 梁胜文, 吴玉婷, 等. 武汉市居民区大气VOCs的污染特征和来源解析 [J]. 南京信息工程大学学报(自然科学版), 2018, 10(5): 527-535. SHEN L J, LIANG S W, WU Y T, et al. Pollution characteristics and source apportionment of VOCs in ambient air of a residential area in Wuhan [J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2018, 10(5): 527-535(in Chinese).
[28] CONTI C, GUARINO M, BACENETTI J. Measurements techniques and models to assess odor annoyance: A review [J]. Environment International, 2020, 134: 105261. doi: 10.1016/j.envint.2019.105261 [29] LI W F, YANG W H, LI J Y. Characterization and prediction of odours from municipal sewage treatment plant [J]. Water Science and Technology, 2018, 2017(3): 762-769. doi: 10.2166/wst.2018.233 [30] XU H J, WANG X G, ZOU Y M, et al. Exergy, economic and environmental assessment of sec-butyl acetate hydrolysis to sec-butyl alcohol using a combined reaction and extractive distillation system [J]. Fuel, 2021, 286: 119372. doi: 10.1016/j.fuel.2020.119372