-
金属尾矿是环境中重金属污染的重要来源。重金属可通过降水、风力等释放到环境中,对周边土壤、地表水、地下水造成污染[1-4]。 金属尾矿如铁尾矿、铜尾矿、黄金尾矿、钼尾矿,其主要化学组成包括硅、铝、铁、钙等元素,矿物组成主要以石英、长石类为主,基本可以满足建筑材料制备的要求,因此制备建筑材料已经成为金属尾矿综合利用的重要途径. 相关研究表明,金属尾矿可用于制备混凝土[5-7]、加气混凝土[8-11]、微晶玻璃[12-15]、陶瓷砖[16-17]、泡沫陶瓷[18-20]、免烧砖[21-23]、水泥熟料[24-25]、泡沫水泥保温材料[26-28]等传统和新型建筑材料. 值得注意的是,尾矿在建材资源化利用中,不可避免地会将重金属带到建筑材料中,通过不同途径释放到环境,影响环境安全和人体健康[29-30]. 因此,研究金属尾矿制备的建筑材料中,重金属的释放规律和环境安全性评价,具有重要的现实意义.
国内已有关于固废制备建筑材料重金属的环境安全性相关报道. 王希尹[31]以添加重金属的混凝土、免烧砖和路基为研究对象,对比了国内外多种重金属浸出方法,进而对固废建材资源化的安全性进行评价. 杨玉飞等[32-33]在水泥生料中添加重金属,通过煅烧制备水泥熟料,采用EA NEN7371和EA NAN7375方法研究了模拟混凝土条件下重金属的释放特性和长期累积释放量,提出需要对进入水泥窑处置过程的重金属总量进行控制. 杨昱等[34]分析了pH值对添加重金属烧成的水泥熟料制备的混凝土样品重金属释放的影响,重金属的浸出与其存在形态以及矿物的作用有一定的相关性. 上述研究多集中于建筑材料中外掺重金属的释放行为,与金属尾矿中重金属的存在状态有一定的差异,并且对尾矿通过不同途径制备的建筑材料环境安全性的研究尚为缺乏.
本研究以采用钼尾矿和黄金尾矿为原料通过3种典型工艺制备的建材制品为研究对象,对尾矿及其建材制品中的重金属总量,建材制品的累积浸出规律、释放机理、释放动力学模型以及各阶段浸出液的pH值和电导率进行分析. 采用改进的欧洲共同体标准物质局(BCR)逐级提取法分析了金属尾矿及其建材制品中重金属的赋存形态,并采用风险评估编码法(RAC)分析了建材制品中重金属对环境的潜在风险,为金属尾矿建材资源化利用的环境安全性提供有效的数据支撑.
基于钼尾矿和金尾矿的多孔建材制品重金属浸出行为及环境影响
Leaching behavior and environmental effect of heavy metals from porous building materials prepared by molybdenum tailing and gold tailing
-
摘要: 针对金属尾矿及其制备的建材制品,分析了6种重金属(As、Cd、Cr、Mn、Pb、Zn)的总量. 参照水槽浸出试验方法研究了重金属的累积释放行为,并利用双常数速率方程、Elovich方程和二级动力学方程对建材制品中重金属的长期释放量进行预测. 采用改进的欧洲共同体标准物质局(BCR)逐级提取法研究了重金属赋存形态,并利用风险评估编码法(RAC)对建材制品重金属的环境风险进行评价. 结果表明,金属尾矿中大部分重金属总量高于中国土壤元素背景值.建材制品中的重金属累积浸出量随浸出时间呈现早期快速增加,后期趋于平衡的规律.动力学方程拟合结果发现重金属在不同建材制品中最优动力学方程拟合结果不同,预测30年的重金属浸出量,大部分重金属浓度低于中国土壤元素背景值,且浸出率低于10%. 尾矿及其建材制品的重金属赋存形态可以看出尾矿制备建材制品对部分重金属有一定的固化作用,残渣态含量增加. RAC结果表明,建材制品中的重金属生态风险处于中风险及以下水平.Abstract: The content of heavy metals (As, Cd, Cr, Mn, Pb, Zn) in tailings and their building materials was analyzed.The cumulative release behavior of heavy metals in building materials was studied according to the tank test. The long-term release of heavy metals in building materials was predicted by using the double constant rate equation, Elovich equation and second order kinetic equation.The chemical speciation of heavy metals was analyzed by modified European Community Bureau of Standards (BCR) step-by-step extraction method, and the environmental risk of heavy metals in building materials was evaluated by the risk assessment code (RAC). The results show that the content of many heavy metals in metal tailings is higher than the background value of soil elements in China.The cumulative leaching amount of heavy metals from building materials increased rapidly in the early stage and tended to be balanced in the later stage.The results of kinetic equation fitting show that the optimal kinetic equation fitting results of heavy metals in different building materials are different. The prediction of cumulative release amount of most heavy metals of 30 years is lower than the background value of soil elements in China, and the leaching rate is less than 10%.The chemical speciation shows that some heavy metals can be solidified by preparing the building materials from tailings, and the content of residual fraction increases.RAC results show that the ecological risk of heavy metals in building materials is below the medium risk level.
-
Key words:
- metallic tailing /
- building material /
- heavy metals /
- leaching /
- environmental risk
-
表 1 浸提液水更换周期
Table 1. Times at which the water must be replenished
浸出阶段
Period累计时间
Time间隔时间/h
IntervalS1 0.25 d±0.6 h 6 S2 1 d± 2.4 h 18 S3 2.25 d±5.4 h 30 S4 4 d± 9.6 h 42 S5 9d ± 21.6 h 120 S6 16 d±24 h 168 S7 36 d±24 h 480 S8 64 d±24 h 672 表 2 BCR法重金属提取步骤
Table 2. Extraction procedures of BCR method for heavy metals
步骤
Steps重金属形态
Speciation of
heavy metals浸提液
Extractants浸提方法
Extraction procedures1 弱酸提取态 0.11 mol·L−1的醋酸溶液 (22±5) ℃振荡提取16 h,在离心机4229 r·min−1情况下离心20 min,分离上层清液为弱酸提取态重金属. 2 可还原态 0.5 mol·L−1的盐酸羟胺溶液 (22±5)℃振荡提取16 h,在离心机4229 r·min−1情况下离心20 min,分离上层清液为可还原态重金属. 3 可氧化态 300 mg·g−1过氧化氢,
1.0 mol·L−1醋酸铵室温消化1 h,(85±2)℃下消化1 h,前0.5 h不断用手摇晃、拔掉瓶塞,在水浴里面继续加热至体积减少到少于3 mL.再加入10 mL过氧化氢,在(85±2)℃下再次加热消化1 h,前0.5 h不断用手摇晃,拔掉瓶塞,在蒸汽浴或其他里面加热至体积减少到大约1 mL.剩余物中加入50 mL醋酸铵溶液,在(22±5) ℃振荡提取16 h.离心分离,上清液为可氧化态. 4 残渣态 盐酸、硝酸、高氯酸和
氢氟酸加入盐酸、硝酸、高氯酸和氢氟酸进行消解,电热板上加热至高氯酸浓白烟冒尽,再加1+1HCl,加热至盐类溶解,冷却定容,作为残渣态. 表 3 尾矿及其建材制品中重金属总量
Table 3. Heavy metal content of tailings and their building materials
样品
Sample单位
Unit重金属 Heavy metal As Cd Cr Mn Pb Zn MoTA mg·kg−1 0.86 0.87 103.85 974.39 15.60 221.89 MoTA-WSM mg·kg−1 3.82 0.71 97.31 876.58 17.56 174.21 MoTB mg·kg−1 230.15 4.93 160.58 1216.87 51.64 1111.91 MoTB-TIM mg·kg−1 152.80 1.50 98.72 515.20 45.76 657.14 AuT mg·kg−1 3016.81 0.46 504.92 533.11 76.69 178.92 AuT-TIM mg·kg−1 76.27 0.07 72.78 56.15 20.53 80.22 中国土壤元素背景值 mg·kg−1 11.2 0.097 61.0 583 26.0 74.2 GB36600-2018
风险筛选值mg·kg−1 20 20 — — 400 — GB36600-2018
风险管制值mg·kg−1 120 47 — — 800 — 表 4 不同浸出区间重金属浸出量直线的斜率
Table 4. Slopes of the different increments
样品
Sample浸出区间
Increment斜率 Slope, rc As Cd Cr Mn Zn MoTA-WSM 2—7 0.14 0.24 0.24 0.24 0.23 5—8 0.09 0.10 0.19 0.16 0.17 4—7 0.10 0.16 0.21 0.17 0.19 3—6 0.14 0.25 0.24 0.22 0.23 2—5 0.17 0.31 0.27 0.30 0.27 1—4 0.25 0.43 0.37 0.38 0.32 MoTB-TIM 2—7 0.46 0.15 0.18 0.67 0.25 5—8 0.46 0.12 0.18 0.06 0.19 4—7 0.47 0.13 0.17 0.06 0.24 3—6 0.39 0.16 0.18 0.70 0.29 2—5 0.45 0.17 0.18 1.12 0.21 1—4 0.72 0.23 0.22 0.96 0.28 AuT-TIM 2—7 0.17 0.00 0.24 0.23 0.17 5—8 0.13 0.00 0.13 0.29 0.13 4—7 0.16 0.00 0.15 0.22 0.15 3—6 0.17 0.00 0.22 0.18 0.18 2—5 0.18 0.00 0.31 0.25 0.19 1—4 0.25 0.00 0.43 0.25 0.20 表 5 重金属浸出模型及30年浸出量和浸出率预测
Table 5. Model of heavy metals releasing and prediction of cumulative release amount and rate of 30 years
样品
Sample重金属
Heavy metal模型
Model表达式
EquationR2 浸出量/(mg·kg−1)
Cumulative release
amount浸出率/%
Cumulative
release rateMoTA-WSM As Elovich方程 Q=0.10416lnt+0.5352 0.9854 1.5040 39.381 Cd 二级动力学方程 t/Q=7.98051t+12.7816 0.9814 0.1253 17.593 Cr Elovich方程 Q=0.0234lnt+0.06283 0.9968 0.2805 0.288 Mn Elovich方程 Q=0.16555lnt+0.4752 0.9968 2.0150 0.230 Zn Elovich方程 Q=0.05869lnt+0.1769 0.9959 0.7228 0.415 MoTB-TIM As 双常数速率方程 lnQ=0.45395lnt-5.12268 0.9938 0.4064 0.266 Cd Elovich方程 Q=0.00397lnt+0.01905 0.9983 0.0560 3.732 Cr 双常数速率方程 lnQ=0.18677lnt+0.50579 0.9967 9.4211 9.545 Mn 二级动力学方程 t/Q=13.67437t+49.71919 0.8660 0.0731 0.014 Zn Elovich方程 Q=0.04633lnt+0.13194 0.9601 0.5629 0.086 AuT-
TIMAs Elovich方程 Q=0.00822lnt+0.03548 0.9920 0.1119 0.147 Cd 二级动力学方程 t/Q=2634.3399t+4185.8861 0.7439 0.0004 0.554 Cr Elovich方程 Q=0.00959lnt+0.02764 0.9878 0.1168 0.161 Mn 双常数速率方程 lnQ=0.25406lnt-2.70773 0.9848 0.7084 1.262 Zn Elovich方程 Q=0.1175lnt+0.6461 0.9961 1.7393 2.168 -
[1] WANG P, SUN Z H, HU Y, et al. Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact [J]. Science of the Total Environment, 2019, 695: 133893. doi: 10.1016/j.scitotenv.2019.133893 [2] 黎宁, 王金生, 王业耀, 等. 西南某省14种尾矿重金属浸出量及总量分析 [J]. 中国环境监测, 2015, 31(3): 70-76. doi: 10.3969/j.issn.1002-6002.2015.03.013 LI N, WANG J S, WANG Y Y, et al. Analysis on the heavy metal leaching and content of 14 types of tailings in a certain southwestern Province [J]. Environmental Monitoring in China, 2015, 31(3): 70-76(in Chinese). doi: 10.3969/j.issn.1002-6002.2015.03.013
[3] 周芬琦, 王小芳, 赵新如, 等. 安徽庐江尾矿区河流重金属分布及污染评价 [J]. 环境化学, 2020, 39(10): 2792-2803. doi: 10.7524/j.issn.0254-6108.2019073101 ZHOU F Q, WANG X F, ZHAO X R, et al. Heavy metal distribution and pollution evaluation of rivers along mining area in Lujiang County, Anhui Province [J]. Environmental Chemistry, 2020, 39(10): 2792-2803(in Chinese). doi: 10.7524/j.issn.0254-6108.2019073101
[4] HUANG Z Y, JIANG L, WU P X, et al. Leaching characteristics of heavy metals in tailings and their simultaneous immobilization with triethylenetetramine functioned montmorillonite (TETA-Mt) against simulated acid rain [J]. Environmental Pollution, 2020, 266: 115236. doi: 10.1016/j.envpol.2020.115236 [5] 崔孝炜, 狄燕清, 南宁, 等. 钼尾矿骨料混凝土的试验研究 [J]. 混凝土与水泥制品, 2016(8): 84-87. doi: 10.3969/j.issn.1000-4637.2016.08.021 CUI X W, DI Y Q, NAN N, et al. Experimental research on molybdenum tailing aggregate concrete [J]. China Concrete and Cement Products, 2016(8): 84-87(in Chinese). doi: 10.3969/j.issn.1000-4637.2016.08.021
[6] 崔孝炜, 狄燕清, 庞华, 等. 用某钼尾矿制备高性能混凝土的试验 [J]. 金属矿山, 2017(7): 193-196. doi: 10.3969/j.issn.1001-1250.2017.07.040 CUI X W, DI Y Q, PANG H, et al. Research on preparation of high performance concrete with molybdenum tailings [J]. Metal Mine, 2017(7): 193-196(in Chinese). doi: 10.3969/j.issn.1001-1250.2017.07.040
[7] 胡家兵, 朱领, 张伟. 磨细钼尾矿粉用作混凝土掺合料的性能研究 [J]. 混凝土与水泥制品, 2016(12): 88-91. doi: 10.3969/j.issn.1000-4637.2016.12.020 HU J B, ZHU L, ZHANG W. Study on performances of fine molybdenum tailing powder as concrete admixture [J]. China Concrete and Cement Products, 2016(12): 88-91(in Chinese). doi: 10.3969/j.issn.1000-4637.2016.12.020
[8] 黄雪嵩. 利用洛南钼尾矿生产加气混凝土关键技术研究 [J]. 石油和化工设备, 2015, 18(10): 41-45. doi: 10.3969/j.issn.1674-8980.2015.10.016 HUANG X S. Key technology research on the preparation of autoclaved aerated concrete with molybdenum tailing from Luoyang [J]. Petro & Chemical Equipment, 2015, 18(10): 41-45(in Chinese). doi: 10.3969/j.issn.1674-8980.2015.10.016
[9] 陈鳌聪, 魏转花. 蒸压制度对金尾矿加气混凝土性能的影响 [J]. 新型建筑材料, 2015, 42(1): 86-89. doi: 10.3969/j.issn.1001-702X.2015.01.023 CHEN A C, WEI Z H. Influence of different autoclaved system on the property of autoclaved aerated concrete based on gold ore tailings [J]. New Building Materials, 2015, 42(1): 86-89(in Chinese). doi: 10.3969/j.issn.1001-702X.2015.01.023
[10] 丁亚斌, 吴卫平. 利用黄金尾矿生产加气混凝土砌块 [J]. 新型建筑材料, 2009, 36(12): 38-40. doi: 10.3969/j.issn.1001-702X.2009.12.011 DING Y B, WU W P. Preparation of aerated concrete block by making use of the gold tailings [J]. New Building Materials, 2009, 36(12): 38-40(in Chinese). doi: 10.3969/j.issn.1001-702X.2009.12.011
[11] CAI L X, MA B G, LI X G, et al. Mechanical and hydration characteristics of autoclaved aerated concrete (AAC) containing iron-tailings: Effect of content and fineness [J]. Construction and Building Materials, 2016, 128: 361-372. doi: 10.1016/j.conbuildmat.2016.10.031 [12] 沈洁, 赵跃智, 李红霞, 等. 钼尾矿制备建筑用微晶玻璃的初步研究 [J]. 玻璃, 2010, 37(3): 3-5. doi: 10.3969/j.issn.1003-1987.2010.03.001 SHEN J, ZHAO Y Z, LI H X, et al. Preliminary study on preparation of glass ceramics in building with molybdenum tailings [J]. Glass, 2010, 37(3): 3-5(in Chinese). doi: 10.3969/j.issn.1003-1987.2010.03.001
[13] 于欣. 铁尾矿建筑微晶玻璃的制备及其析晶性能研究[D]. 沈阳: 沈阳建筑大学, 2017: 82. YU X. Study on preparation and crystallization properties of building glass-ceramics from iron tailings[D]. Shenyang: Shenyang Jianzhu University, 2017: 82.
[14] SHAO H, LIANG K, PENG F, et al. Production and properties of cordierite-based glass-ceramics from gold tailings [J]. Minerals Engineering, 2005, 18(6): 635-637. doi: 10.1016/j.mineng.2004.09.007 [15] 陈维铅, 高淑雅, 刘杰, 等. 熔融法制备金尾矿微晶玻璃及性能研究 [J]. 人工晶体学报, 2014, 43(1): 217-221. doi: 10.3969/j.issn.1000-985X.2014.01.037 CHEN W Q, GAO S Y, LIU J, et al. Preparation and properties of glass-ceramics from gold tailings by melting method [J]. Journal of Synthetic Crystals, 2014, 43(1): 217-221(in Chinese). doi: 10.3969/j.issn.1000-985X.2014.01.037
[16] 王秀兰, 田达威, 史苘桧, 等. 钼尾矿制备建筑陶瓷及性能研究 [J]. 人工晶体学报, 2017, 46(8): 1517-1520. WANG X L, TIAN D W, SHI Q H, et al. Preparation and performances of building ceramic by molybdenum tailings [J]. Journal of Synthetic Crystals, 2017, 46(8): 1517-1520(in Chinese).
[17] 叶力佳, 申士富, 王志平, 等. 利用铜钼尾矿制备建筑陶瓷砖的试验研究 [J]. 矿冶, 2015, 24(3): 68-71. doi: 10.3969/j.issn.1005-7854.2015.03.017 YE L J, SHEN S F, WANG Z P, et al. Study on preparation of building ceramic tiles using copper-molybdenum tailings [J]. Mining and Metallurgy, 2015, 24(3): 68-71(in Chinese). doi: 10.3969/j.issn.1005-7854.2015.03.017
[18] 李兆威, 钟路生. 一种高掺量钼尾矿渣泡沫陶瓷的研制 [J]. 陶瓷, 2017(6): 27-29. doi: 10.3969/j.issn.1002-2872.2017.06.005 LI Z W, ZHONG L S. Study on the foamed ceramics prepared by molybdenum tailings with high content [J]. Ceramics, 2017(6): 27-29(in Chinese). doi: 10.3969/j.issn.1002-2872.2017.06.005
[19] 刘媛媛, 肖慧, 李寿德. 铁尾矿烧结多孔保温材料气孔形成的机理研究 [J]. 新型建筑材料, 2010, 37(4): 47-49,58. doi: 10.3969/j.issn.1001-702X.2010.04.013 LIU Y Y, XIAO H, LI S D. Study on bubble formation mechanism for thermal insulation porous materials of iron tailings [J]. New Building Materials, 2010, 37(4): 47-49,58(in Chinese). doi: 10.3969/j.issn.1001-702X.2010.04.013
[20] 周明凯, 王亚婕, 王怀德. 金尾矿高硫选冶尾渣制备发泡陶瓷 [J]. 中国陶瓷, 2016, 52(3): 77-81. ZHOU M K, WANG Y J, WANG H D. Study of foam ceramic prepared by high-sulfur gold ore tailings [J]. China Ceramics, 2016, 52(3): 77-81(in Chinese).
[21] 代文彬, 陈旭峰, 苍大强. 承德钼尾矿免烧砖的制备与着色 [J]. 金属矿山, 2017(8): 204-208. doi: 10.3969/j.issn.1001-1250.2017.08.037 DAI W B, CHEN X F, CANG D Q. Preparation and coloring of baking-free brick made of Chengde molybdenum tailings [J]. Metal Mine, 2017(8): 204-208(in Chinese). doi: 10.3969/j.issn.1001-1250.2017.08.037
[22] 李春, 崔乐, 周春生, 等. 掺钼尾矿氯氧镁水泥免烧砖的制备 [J]. 混凝土与水泥制品, 2015(6): 93-95. doi: 10.3969/j.issn.1000-4637.2015.06.022 LI C, CUI L, ZHOU C S, et al. Preparation of baking-free brick with magnesium oxychloride cement adding molybdenum tailing [J]. China Concrete and Cement Products, 2015(6): 93-95(in Chinese). doi: 10.3969/j.issn.1000-4637.2015.06.022
[23] 李春, 王恩峰, 崔乐, 等. 掺杂商洛钼尾矿制备免烧砖的研究 [J]. 新型建筑材料, 2016, 43(7): 90-92. doi: 10.3969/j.issn.1001-702X.2016.07.023 LI C, WANG E F, CUI L, et al. Preparation of unfired brick by molybdenum tailings of Shangluo [J]. New Building Materials, 2016, 43(7): 90-92(in Chinese). doi: 10.3969/j.issn.1001-702X.2016.07.023
[24] 朱建平, 侯欢欢, 尹海滨, 等. 钼尾矿制备贝利特水泥熟料早期性能研究 [J]. 硅酸盐通报, 2015, 34(7): 1839-1843. ZHU J P, HOU H H, YIN H B, et al. Early performances of belite cement clinker from molybdenum tailings [J]. Bulletin of the Chinese Ceramic Society, 2015, 34(7): 1839-1843(in Chinese).
[25] 朱建平, 侯欢欢, 朱孔赞, 等. 利用钼尾矿和赤泥烧制贝利特-硫铝酸钙水泥熟料 [J]. 混凝土, 2015(10): 99-101,112. doi: 10.3969/j.issn.1002-3550.2015.10.025 ZHU J P, HOU H H, ZHU K Z, et al. Preparation of belite-calcium sulphoaluminate cement clinker from molybdenum tailing sand red mud [J]. Concrete, 2015(10): 99-101,112(in Chinese). doi: 10.3969/j.issn.1002-3550.2015.10.025
[26] 狄燕清, 崔孝炜, 李春, 等. 掺钼尾矿发泡水泥保温材料的制备 [J]. 新型建筑材料, 2016, 43(4): 10-13. doi: 10.3969/j.issn.1001-702X.2016.04.003 DI Y Q, CUI X W, LI C, et al. Study on preparation of porous insulation materials with molybdenum tailings [J]. New Building Materials, 2016, 43(4): 10-13(in Chinese). doi: 10.3969/j.issn.1001-702X.2016.04.003
[27] 李凯斌, 周春生, 刘彦峰, 等. 掺杂钼尾矿发泡水泥制备工艺优化 [J]. 陕西科技大学学报, 2017, 35(3): 75-78. doi: 10.3969/j.issn.1000-5811.2017.03.014 LI K B, ZHOU C S, LIU Y F, et al. Preparation and technological optimization of the foamed cement with molybdenum tailings [J]. Journal of Shanxi University of Science & Technology, 2017, 35(3): 75-78(in Chinese). doi: 10.3969/j.issn.1000-5811.2017.03.014
[28] 狄燕清, 崔孝炜, 庞华, 等. 掺尾矿新型轻质建筑保温材料的制备 [J]. 混凝土与水泥制品, 2016(6): 66-69. doi: 10.3969/j.issn.1000-4637.2016.06.016 DI Y Q, CUI X W, PANG H, et al. Preparation of new type of lightweight building insulation materials with tailings [J]. China Concrete and Cement Products, 2016(6): 66-69(in Chinese). doi: 10.3969/j.issn.1000-4637.2016.06.016
[29] 苏静. 尾矿及其建筑材料的重金属迁移固化的研究[D]. 北京: 北京交通大学, 2017: 93. SU J. Study on migration and solidification of heavy metals from tailings and its building materials[D]. Beijing: Beijing Jiaotong University, 2017: 93.
[30] MA B G, CAI L X, LI X G, et al. Utilization of iron tailings as substitute in autoclaved aerated concrete: Physico-mechanical and microstructure of hydration products [J]. Journal of Cleaner Production, 2016, 127: 162-171. doi: 10.1016/j.jclepro.2016.03.172 [31] 王希尹. 固废生产建材中重金属浸出方法研究[D]. 重庆: 重庆交通大学, 2018: 101. WANG X Y. Study on leaching methods of heavy metals in solid waste production building materials[D]. Chongqing: Chongqing Jiaotong University, 2018: 101.
[32] 杨玉飞, 黄启飞, 张霞, 等. 废物水泥窑共处置产品中重金属释放量研究 [J]. 环境科学, 2009, 30(5): 1539-1544. doi: 10.3321/j.issn:0250-3301.2009.05.047 YANG Y F, HUANG Q F, ZHANG X, et al. Release amount of heavy metals in cement product from co-processing waste in cement kiln [J]. Environmental Science, 2009, 30(5): 1539-1544(in Chinese). doi: 10.3321/j.issn:0250-3301.2009.05.047
[33] 杨玉飞, 杨昱, 黄启飞, 等. 废物水泥窑共处置产品中重金属的释放特性 [J]. 中国环境科学, 2009, 29(2): 175-180. doi: 10.3321/j.issn:1000-6923.2009.02.012 YANG Y F, YANG Y, HUANG Q F, et al. Release characteristics of heavy metals in cement product from co-processing waste in cement kiln [J]. China Environmental Science, 2009, 29(2): 175-180(in Chinese). doi: 10.3321/j.issn:1000-6923.2009.02.012
[34] 杨昱, 杨玉飞, 黄启飞, 等. 废物水泥窑共处置产品中重金属释放pH静态试验研究 [J]. 环境科学研究, 2008, 21(6): 52-56. YANG Y, YANG Y F, HUANG Q F, et al. pH-dependence test study on the release of heavy metals in cement product from co-processing waste in cement kiln [J]. Research of Environmental Sciences, 2008, 21(6): 52-56(in Chinese).