-
全氟及多氟烷基化合物(per- and polyfluoroalkyl substances,PFASs),简称全氟化合物,即指化合物分子中与碳原子相连的多个或者全部氢原子被氟原子取代的有机化合物[1]。碳-氟(C—F)键键能较高,导致全氟化合物具有疏油、疏水、耐酸碱、热稳定性和弱分子间相互作用等特性[2]。据不完全统计,过去的几十年中超过4700种全氟化合物被广泛应用于消防、表面活性剂、制冷和催化剂[3-6]等行业,并因为其具有较强的生物富集潜力、生态毒性和长距离迁移能力等,已成为全球性污染物[7-10]。例如目前使用最广的全氟化合物之一的全氟辛酸(perfluorooctanic acid,PFOA),在极地野生动物的血液和器官组织中均有检出[11];毒理学研究表明全氟辛酸具有肝毒性、免疫毒性和神经毒性等[12]。
2014年,PFOA被国际癌症研究所划分为“人类可疑致癌物”[13],2019年正式将PFOA及其衍生品列入《斯德哥尔摩公约》,限制其生产和使用[14]。新型全氟化合物-六氟环氧丙烷二聚体铵盐(ammonium hexafluoropropylene oxide dimer acid,HFPO-DA,商品名Gen X)和六氟环氧丙烷三聚体羧酸(hexafluoropropylene oxide trimer acid,HFPO-TA)(化学结构如图1所示)是目前最主要的PFOA替代物。近年来的环境监测显示,在氟化学工厂附近生活的19—40岁中青年血液中HFPO-TA的检出率为99.2%,其浓度远高于其他新型全氟化合物[15]。在中国南海江豚和海豚的肝脏样品中HFPO-DA的检出率为92%,对样品中总全氟化合物的贡献率为1%。在连续6年的生物监测中,HFPO-DA在海洋哺乳动物体内的浓度呈现出明显的上升趋势[16]。因此新型全氟化合物的生物富集和环境风险值得进一步的关注和研究。
建立一种操作简单且准确度、精密度和灵敏度高的方法,将为后续研究新型全氟化合物的环境行为和生物监测奠定基础。已有的关于传统全氟化合物分析方法多采用阴离子交换液液萃取和WAX固相萃取小柱净化等手段[16-17]。该方法存在操作复杂、耗时长、有机溶剂用量大、经济成本高等不足。对于需要开展大批量样品检测的生物监测类研究,开发一种简便、快捷的方法以提高分析效率尤为重要。基于绿色化学理念的QuEChERs(quick, easy, cheap, effective, rugged, and safe)方法是传统多残留分析方法的简化版[18],于2003年首次被报道应用于食品基质中农药多残留的提取分析[19]。经过研究人员的不断拓展创新,QuEChERs方法已经逐渐被应用于测定环境、食品和生物样品中的多氯联苯、多环芳烃、有机磷阻燃剂和传统全氟化合物[18, 20-21]。已有文献报道将其应用于动物源性食品中传统直链全氟化合物的提取[22-26],对于将QuEChERs方法应用于小鼠器官中新型全氟化合物的提取分析还鲜有报道。
本研究借助QuEChERs和分散固相萃取(dispersive solid-phase extraction,d-SPE)净化方法结合超高效液相色谱串联三重四极杆质谱(UPLC-MS/MS)建立新型全氟化合物(HFPO-TA和HFPO-DA)和与之替代的传统全氟化合物(PFOA)在小鼠器官中的提取净化分析方法。
小鼠器官中新型全氟化合物QuEChERs分析方法的建立与应用
Analysis of emerging per- and polyfluoroalkyl substances in mouse organs by QuEChERs
-
摘要: 六氟环氧丙烷二聚体铵盐(HFPO-DA,商品名Gen X)和六氟环氧丙烷三聚体羧酸(HFPO-TA)是目前最主要的全氟辛酸(PFOA)替代物。建立了以QuEChERs为核心的小鼠器官中HFPO-DA、HFPO-TA和PFOA的检测方法。小鼠器官样品经冻干粉碎后使用0.2%盐酸-乙腈溶液提取,混合N-丙基乙二胺、十八烷基键合硅胶和石墨化炭黑吸附剂做分散固相萃取净化,采用超高效液相色谱串联三重四极杆质谱检测。样品经C18色谱柱分离,1 mmol·L−1乙酸铵水-甲醇溶液做流动相。结果表明,HFPO-DA、HFPO-TA和PFOA在5—500 μg·L−1的浓度范围内线性关系良好,相关系数均大于0.99。在5、10、100 μg·kg−1 的3个添加水平下的平均回收率为64.8%—120%,相对标准偏差为0.6%—22.4%。不同小鼠器官中的最小检出量为0.016—0.077 μg·kg−1,最低定量限为5.35×10−4—2.55×10−3 ng。通过经口饲喂的方式将3种目标分析物暴露小鼠,应用已建立方法测定3种目标分析物在小鼠器官中的累积程度。检测发现,3种目标分析物总累积浓度次序为肝脏>肾脏>肺>心脏>大脑。各器官中HFPO-DA的累积浓度均显著(P<0.05)低于HFPO-TA和PFOA,说明相比较于HFPO-DA,PFOA和HFPO-TA有更强的生物富集潜力.Abstract: Ammonium hexafluoropropylene oxide dimer acid (HFPO-DA) and hexafluoropropylene oxide trimer acid (HFPO-TA) are the main alternatives for perfluorooctanic acid (PFOA). A QuEChERs-based novel method was established to simultaneously determine HFPO-DA, HFPO-TA, and PFOA in mouse organs. The mouse organs were extracted with a mixture of 0.2% HCl-acetonitrile, purified by dispersive solid-phase extraction with sorbents of N-propylethylenediamine, octadecyl bonded silica gel, and graphitized carbon black, and detected on ultra-performance liquid chromatography-tandem triple quadrupole mass spectrometry. The mixture of ammonium acetate aqueous solution (1 mmol·L−1) and methanol was used as the mobile phase, and the target analytes were separated with a C18 column. A calibration was performed for each analyte using the external matrix matched standards to eliminate the matrix effect. The matrix-matched calibration curves from 5 μg·L−1 to 500 μg·L−1 showed excellent linearity for all the analytes with R2 ≥ 0.99. The mean recoveries from mouse organs were 64.8%—120% with relative standard deviations of 0.6%—22.4%. The limit of detection and limit of quantitation for all the analytes were 0.016—0.077 μg·kg−1 and 5.35×10−4—2.55×10−3 ng. Mice were exposed to the target analytes by oral feeding. The accumulation of the 3 target analytes, measured by QuEChERs, was in the order of HFPO-TA > PFOA > HFPO-DA. The concentrations of HFPO-DA were significantly (P<0.01) lower than HFPO-TA and PFOA, indicating that HFPO-TA and PFOA have stronger bioaccumulation potential when compared with HFPO-DA.
-
表 1 多重反应监测条件
Table 1. Multiple response monitoring conditions
化合物
Compound分子量
Molecular weight母离子
Parent ion(m/z)子离子
Product ion(m/z)碰撞能量/eV
Collision energy锥孔电压/V
Con voltagePFOA 414.07 412.7 369*,169 13,26 −11,−11 HFPO-DA 347 285 185.1,169* 28,10 −3,−5 HFPO-TA 496.07 495 185*,119 15,76 −29,−34 注:*为定量离子(Quantification ion). 表 2 目标分析物的线性关系、基质效应和灵敏度
Table 2. The linearity, matrix effect, LOD, and LOQ in different matrices of target analytes
化合物
Compound基质
Matrix线性范围/(μg·L−1)
Linear range线性回归方程
Linear regression equation相关系数
R2基质效应
Matrix effect检出限/(μg·kg−1)
LOD定量限/ng
LOQHFPO-TA 溶剂 5—500 y = 1127167.9x−9339.7 0.9985 肺 y = 1513689.3x+64976.9 0.9994 34.3 0.033 1.11×10−3 肝脏 y = 1948167.8x + 4061.1 0.9939 72.8 0.032 1.06 ×10−3 大脑 y = 1141739.2x - 1827.9 0.9983 1.29 0.059 1.95 × 10−3 肾脏 y = 936791.55x - 12930.8 0.9924 −16.9 0.067 2.23 × 10−3 心脏 y = 1176418.9x + 11229.8 0.9981 4.40 0.077 2.55 × 10−3 HFPO-DA 溶剂 5—500 y = 73531199.76x−412121.8 0.9997 肺 y = 14208329.7x+203490.4 0.9959 −80.7 0.070 2.33 × 10−3 肝脏 y = 14903379.9x+103425.3 0.9987 −79.7 0.072 2.41 × 10−3 大脑 y = 26824971.1x - 267020.2 0.9904 −63.5 0.032 1.05 × 10−3 肾脏 y = 18930496.41x + 86476.4 0.9996 −74.3 0.035 1.18 × 10−3 心脏 y = 31251384.1x - 62905.3 0.9997 −57.5 0.037 1.25 × 10−3 PFOA 溶剂 5—500 y = 38001300.6x - 1277.5 0.9998 肺 y = 15354735.3x+131561.6 0.9987 −59.6 0.026 8.79 × 10−4 肝脏 y = 15871133.5x + 148426.0 0.9989 −58.2 0.016 5.35 × 10−4 大脑 y = 20042969.4x + 186424.7 0.9946 −47.3 0.023 7.51 × 10−4 肾脏 y = 21453758.7x + 198,880.2 0.9993 −43.5 0.016 5.49 × 10−4 心脏 y = 27017643.3x - 8176.8 0.9980 −28.9 0.020 6.81 × 10−4 表 3 3种目标分析物在小鼠器官中的回收率和相对标准偏差
Table 3. The mean recovery and RSD of 3 target analytes in different matrices
基质
Matrix添加浓度/
(μg·kg−1)
Add ConcentrationHFPO-TA HFPO-DA PFOA R1 R2 R3 均值% RSD/% R1 R2 R3 均值/% RSD/% R1 R2 R3 均值/% RSD/% 肝脏 5 72.3 73.4 66.8 70.8 5 108.8 95.8 89.5 98 10 98.4 125.6 85.1 103 20 10 84.1 70.3 80.4 78.3 9.1 83 82.1 83.3 82.8 0.75 64.7 63.1 66.5 64.8 2.6 100 87.4 85.4 84.2 85.7 1.9 96.1 72.3 80.5 82.9 14.6 86.2 78 78.6 80.9 5.6 肺 5 112.7 87.9 101.3 100.6 12.3 101.6 84.9 77.8 88.1 13.9 73.5 73.7 83.4 76.9 7.3 10 105 108.9 100.8 104.9 3.86 86 109.1 77 90.7 18.3 84.4 82.4 80.9 82.6 2.1 100 108.7 94.6 91.8 98.4 9.2 95 85.2 83.5 87.9 7.1 98.3 92 80.9 90.4 9.7 脑 5 88.9 80.4 79 82.8 6.5 79.1 76.6 71.3 75.7 5.3 99 84 88 90.3 8.6 10 104.2 75.7 95.9 91.9 15.9 86.2 93.4 86.9 88.8 4.5 87.1 83.8 84.2 85 2.1 100 120.0 120.0 119.4 120.0 0.7 93.2 84.7 85.7 87.9 5.3 100.4 80.6 100.8 93.9 12.3 肾 5 94.3 111.4 82.8 96.2 14.9 105.4 75 78.5 86.3 19.3 103.2 95.4 98 98.9 4.1 10 83.2 84.1 120.9 96.1 22.4 116.2 80.2 81.6 92.7 22 91.3 81.5 85.9 86.2 5.7 100 97.2 104.5 92.2 97.9 6.3 102.2 81.8 88.8 90.9 11.3 92.9 79.9 84.8 85.9 7.6 心脏 5 107.5 91.4 87.7 95.5 11 75.7 80 94.5 83.4 11.8 89.4 88.5 105.3 94.4 10 10 121.6 89.6 85.2 99.8 20 112.6 106 103.2 107.3 4.5 89.3 80.8 80.5 83.5 5.9 100 103.6 79.9 97 93.5 13 90.6 95.8 90.8 92.4 3.2 81.5 82.4 81.5 81.8 0.6 -
[1] 李侃. 典型全氟化合物在食物中的生物有效性及对小鼠的肝毒性、致毒机制研究[D]. 南京: 南京大学, 2015. LI K. Typical perfluoroalkyl substances bioavailability in foods, and their exposure caused mice liver toxicity, and mode of action[D]. Nanjing: Nanjing University, 2015(in Chinese).
[2] 曾士宜, 杨鸿波, 彭洁, 等. 贵州草海湖泊表层水与沉积物中全氟化合物的污染特征及风险评估 [J]. 环境化学, 2021, 40(4): 1193-1205. doi: 10.7524/j.issn.0254-6108.2020072404 ZENG S Y, YANG H B, PENG J, et al. Pollution characteristics and risk assessment of perfluorinated compounds in surface water and sediments of Caohai Lake of Guizhou Province [J]. Environmental Chemistry, 2021, 40(4): 1193-1205(in Chinese). doi: 10.7524/j.issn.0254-6108.2020072404
[3] WANG Z Y, DEWITT J C, HIGGINS C P, et al. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? [J]. Environmental Science & Technology, 2017, 51(5): 2508-2518. [4] IM J, WALSHE-LANGFORD G E, MOON J W, et al. Environmental fate of the next generation refrigerant 2, 3, 3, 3-tetrafluoropropene (HFO-1234yf) [J]. Environmental Science & Technology, 2014, 48(22): 13181-13187. [5] FURUYA T, KAMLET A S, RITTER T. Catalysis for fluorination and trifluoromethylation [J]. Nature, 2011, 473(7348): 470-477. doi: 10.1038/nature10108 [6] BARZEN-HANSON K A, ROBERTS S C, CHOYKE S, et al. Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater [J]. Environmental Science & Technology, 2017, 51(4): 2047-2057. [7] KIM K Y, NDABAMBI M, CHOI S, et al. Legacy and novel perfluoroalkyl and polyfluoroalkyl substances in industrial wastewater and the receiving river water: Temporal changes in relative abundances of regulated compounds and alternatives [J]. Water Research, 2021, 191: 116830. doi: 10.1016/j.watres.2021.116830 [8] DREYER A, THUENS S, KIRCHGEORG T, et al. Ombrotrophic peat bogs are not suited as natural archives to investigate the historical atmospheric deposition of perfluoroalkyl substances [J]. Environmental Science & Technology, 2012, 46(14): 7512-7519. [9] HEYDEBRECK F, TANG J H, XIE Z Y, et al. Alternative and legacy perfluoroalkyl substances: differences between European and Chinese river/estuary systems [J]. Environmental Science & Technology, 2015, 49(14): 8386-8395. [10] SHI Y L, VESTERGREN R, XU L, et al. Human exposure and elimination kinetics of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) [J]. Environmental Science & Technology, 2016, 50(5): 2396-2404. [11] GURUGE K S, YEUNG L W Y, YAMANAKA N, et al. Gene expression profiles in rat liver treated with perfluorooctanoic acid (PFOA) [J]. Toxicological Sciences, 2006, 89(1): 93-107. doi: 10.1093/toxsci/kfj011 [12] 刘嘉烈, 石运刚, 唐娜, 等. 重庆长江流域鲫鱼和沉积物中17种全氟化合物污染特征 [J]. 环境化学, 2020, 39(12): 3450-3461. LIU J L, SHI Y G, TANG N, et al. Pollution characteristics of seventeen per- and polyfluoroalkyl substances in fish and sediments of Yangtze River Basin in Chongqing City [J]. Environmental Chemistry, 2020, 39(12): 3450-3461(in Chinese).
[13] 盛南, 潘奕陶, 戴家银. 新型全氟及多氟烷基化合物生态毒理研究进展 [J]. 安徽大学学报(自然科学版), 2018, 42(6): 3-13. SHENG N, PAN Y T, DAI J Y. Current research status of several emerging per-and polyfluoroalkyl substances(PFASs) [J]. Journal of Anhui University (Natural Science Edition), 2018, 42(6): 3-13(in Chinese).
[14] PINAS V, van DIJK C, WEBER R. Inventory and action plan for PFOS and related substances in Suriname as basis for Stockholm Convention implementation [J]. Emerging Contaminants, 2020, 6: 421-431. doi: 10.1016/j.emcon.2020.10.002 [15] SUN M, AREVALO E, STRYNAR M, et al. Legacy and emerging perfluoroalkyl substances are important drinking water contaminants in the cape fear river watershed of north Carolina [J]. Environmental Science & Technology Letters, 2016, 3(12): 415-419. [16] WANG Q, RUAN Y F, JIN L J, et al. Target, nontarget, and suspect screening and temporal trends of per- and polyfluoroalkyl substances in marine mammals from the South China sea [J]. Environmental Science & Technology, 2021, 55(2): 1045-1056. [17] JACOB P, BARZEN-HANSON K A, HELBLING D E. Target and nontarget analysis of per- and polyfluoralkyl substances in wastewater from electronics fabrication facilities [J]. Environmental Science & Technology, 2021, 55(4): 2346-2356. [18] KIM L, LEE D, CHO H K, et al. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals [J]. Trends in Environmental Analytical Chemistry, 2019, 22: e00063. doi: 10.1016/j.teac.2019.e00063 [19] ANASTASSIADES M, LEHOTAY S J, ŠTAJNBAHER D, et al. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce [J]. Journal of Aoac International, 2003, 86(2): 412-431. doi: 10.1093/jaoac/86.2.412 [20] BESER M I, PARDO O, BELTRÁN J, et al. Determination of 21 perfluoroalkyl substances and organophosphorus compounds in breast milk by liquid chromatography coupled to orbitrap high-resolution mass spectrometry [J]. Analytica Chimica Acta, 2019, 1049: 123-132. doi: 10.1016/j.aca.2018.10.033 [21] SANTANA-MAYOR Á, SOCAS-RODRÍGUEZ B, HERRERA-HERRERA A V, et al. Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis [J]. TrAC Trends in Analytical Chemistry, 2019, 116: 214-235. doi: 10.1016/j.trac.2019.04.018 [22] 李磊, 周贻兵, 刘利亚, 等. QuEChERs净化-超高效液相色谱-串联质谱法快速测定母乳中9种全氟化合物 [J]. 现代预防医学, 2018, 45(11): 2028-2033, 2038. LI L, ZHOU Y B, LIU L Y, et al. Determination of 9 perfluorinated compounds in breast milk by QuEChERs purification and ultrahigh performance liquid chromatography-tandem mass spectrometry [J]. Modern Preventive Medicine, 2018, 45(11): 2028-2033, 2038(in Chinese).
[23] 白文荟, 刘金钏, 颜朦朦, 等. 猪肉、猪肝中17种全氟烷基化合物的HPLC-MS/MS测定 [J]. 食品安全质量检测学报, 2015, 6(1): 189-196. BAI W H, LIU J C, YAN M M, et al. Determination of 17 perflurorinated alkylated substances in pork and pork liver by high performance liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2015, 6(1): 189-196(in Chinese).
[24] 何建丽, 彭涛, 谢洁, 等. 高效液相色谱-串联质谱法测定动物肝脏中20种全氟烷基类化合物 [J]. 分析化学, 2015, 43(1): 40-48. doi: 10.1016/S1872-2040(15)60799-X HE J L, PENG T, XIE J, et al. Development of a QuEChERs method for determination of 20 Perfluorinated compounds in animal liver by HPLC-MS / MS [J]. Chinese Journal of Analytical Chemistry, 2015, 43(1): 40-48(in Chinese). doi: 10.1016/S1872-2040(15)60799-X
[25] 朱萍萍, 岳振峰, 郑宗坤, 等. 分散固相萃取结合高效液相色谱-串联质谱法测定羊肝中19种全氟烷基酸 [J]. 色谱, 2015, 33(5): 494-500. doi: 10.3724/SP.J.1123.2014.12034 ZHU P P, YUE Z F, ZHENG Z K, et al. Determination of perfluoroalkyl acids in lamb liver by high performance liquid chromatography tandem mass spectrometry combined with dispersive solid phase extraction [J]. Chinese Journal of Chromatography, 2015, 33(5): 494-500(in Chinese). doi: 10.3724/SP.J.1123.2014.12034
[26] 王莹, 杜思宇, 张红, 等. 改进的QuEChERS-UPLC-MS/MS法测定动物源性食品中13种全氟化合物 [J]. 食品工业科技, 2021, 42(1): 239-249. WANG Y, DU S Y, ZHANG H, et al. Determination of thirteen PFCs in animal-derived food by improved QuEChERS extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Science and Technology of Food Industry, 2021, 42(1): 239-249(in Chinese).
[27] SUN M N, YU L, TONG Z, et al. Determination of phenamacril residues in flour and rice based on Z-Sep+ using ultra-high-performance liquid chromatography-tandem mass spectrometry [J]. Biomedical Chromatography, 2019, 33(12): e4688. [28] WEN Y, WANG Z, GAO Y Y, et al. Novel liquid chromatography-tandem mass spectrometry method for enantioseparation of tefluthrin via a box-behnken design and its stereoselective degradation in soil [J]. Journal of Agricultural and Food Chemistry, 2019, 67(42): 11591-11597. doi: 10.1021/acs.jafc.9b04888 [29] 陈诗艳, 仇雁翎, 朱志良, 等. 土壤中全氟和多氟烷基化合物的污染现状及环境行为 [J]. 环境科学研究, 2021, 34(2): 468-478. CHEN S Y, QIU Y L, ZHU Z L, et al. Current pollution status and environmental behaviors of PFASs in soil [J]. Research of Environmental Sciences, 2021, 34(2): 468-478(in Chinese).
[30] 中华人民共和国国家卫生和计划生育委员会. 中华人民共和国国家标准: 食品安全国家标准 动物源性食品中全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定 GB 5009.253—2016[S]. 北京: 中国标准出版社, 2017. National Standard (Mandatory) of the People's Republic of China. GB 5009.253—2016[S]. Beijing: Standards Press of China, 2017(in Chinese).
[31] 中华人民共和国国家卫生和计划生育委员会. 中华人民共和国国家标准: 食品安全国家标准 食品接触材料及制品 全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定 GB 31604.35—2016[S]. 北京: 中国标准出版社, 2017. National Standard (Mandatory) of the People's Republic of China. GB 31604.5—2016[S]. Beijing: Standards Press of China, 2017(in Chinese).
[32] LIU M L, DONG F F, YI S J, et al. Probing mechanisms for the tissue-specific distribution and biotransformation of perfluoroalkyl phosphinic acids in common carp (Cyprinus carpio) [J]. Environmental Science & Technology, 2020, 54(8): 4932-4941. [33] YU Y C, ZHANG K Y, LI Z, et al. Microbial cleavage of C-F bonds in two C6 per- and polyfluorinated compounds via reductive defluorination [J]. Environmental Science & Technology, 2020, 54(22): 14393-14402. [34] 侯沙沙, 王晓晨, 谢琳娜, 等. 氟工厂附近青少年体内全氟化合物(PFASs)暴露特征分析及其与性征发育水平关联性初探 [J]. 环境化学, 2020, 39(4): 931-940. doi: 10.7524/j.issn.0254-6108.2019110102 HOU S S, WANG X C, XIE L N, et al. Exposure to perfluoroalkyl and polyfluoroalkyl substances and association with the level of pubertal development of adolescents near a flurochemical plant [J]. Environmental Chemistry, 2020, 39(4): 931-940(in Chinese). doi: 10.7524/j.issn.0254-6108.2019110102
[35] 蓝芳, 冯沙, 沈金灿, 等. 高效液相色谱-串联质谱法测定葡萄酒中14种全氟化合物 [J]. 分析化学, 2013, 41(12): 1893-1898. LAN F, FENG S, SHEN J C, et al. Determination of 14 perfluorinated compounds in wine by high performance liquid chromatography-mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2013, 41(12): 1893-1898(in Chinese).
[36] 达晶, 王钢力, 曹进, 等. QuEChERS-液相色谱-串联质谱法测定植物性食品中30种氨基甲酸酯类农药残留 [J]. 色谱, 2015, 33(8): 830-837. doi: 10.3724/SP.J.1123.2015.04013 DA J, WANG G L, CAO J, et al. Determination of 30 carbamate pesticide residues in vegetative foods by QuEChERS-liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2015, 33(8): 830-837(in Chinese). doi: 10.3724/SP.J.1123.2015.04013
[37] 李璐, 李丹凤. QuEChERS-超高效液相色谱-串联质谱法测定蜂蜜中41种糖皮质激素 [J]. 食品安全质量检测学报, 2019, 10(2): 500-509. doi: 10.3969/j.issn.2095-0381.2019.02.036 LI L, LI D F. Determination of 41 kinds of glucocorticoids in honey by QuEChERS coupled with ultra performance liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2019, 10(2): 500-509(in Chinese). doi: 10.3969/j.issn.2095-0381.2019.02.036
[38] HLOUSKOVA V, HRADKOVA P, POUSTKA J, et al. Occurrence of perfluoroalkyl substances (PFASs) in various food items of animal origin collected in four European countries [J]. Food Additives & Contaminants:Part A, 2013, 30(11): 1918-1932. [39] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国国家标准: 合格评定 化学分析方法确认和验证指南 GB/T 27417-2017[S]. 北京: 中国标准出版社, 2017. National Standard (Mandatory) of the People's Republic of China. GB/T 27417-2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
[40] BANGMA J, SZILAGYI J, BLAKE B E, et al. An assessment of serum-dependent impacts on intracellular accumulation and genomic response of per- and polyfluoroalkyl substances in a placental trophoblast model [J]. Environmental Toxicology, 2020, 35(12): 1395-1405. doi: 10.1002/tox.23004 [41] SHENG N, CUI R N, WANG J H, et al. Cytotoxicity of novel fluorinated alternatives to long-chain perfluoroalkyl substances to human liver cell line and their binding capacity to human liver fatty acid binding protein [J]. Archives of Toxicology, 2018, 92(1): 359-369. doi: 10.1007/s00204-017-2055-1