-
随着社会经济的快速发展,环境污染日趋加剧,导致环境中病原微生物(细菌、寄生虫、病毒和真菌等)滋生,造成环境微生物污染问题严峻。水体、空气、土壤等不仅是这些病原微生物的重要生存环境,同时也是它们的传播介质。例如,生活污水、医院污水、动物粪便以及大气漂浮物和气溶胶等含有丰富有机质,常包含引起人类和动物消化系统、呼吸系统和皮肤病变的致病性大肠杆菌、军团杆菌、肺炎链球菌等病原微生物,污水排放、有机肥农用或大气扩散将这些病原微生物进一步传播扩散,人们可通过直接接触、摄入或吸入环境中的病原微生物,从而引发人类疾病的感染与暴发。据世界卫生组织估计,在全球每年数以亿计的食源性疾病患者中,70%是由于食用了各种致病性微生物污染的食品和饮水造成的,全球每年因微生物污染问题带来的经济损失大约为65亿—350亿美元[1]。《中国食品安全发展报告(2019)》指出,我国微生物污染问题仍然突出,是我国第一大食品安全风险[2]。因此,对环境中病原微生物进行监测并追溯其污染来源将对综合评估环境微生物污染程度与污染早期发现、监管与控制环境微生物污染具有重要意义。
环境微生物污染包括细菌性污染、病毒和真菌及其毒素的污染。其中病原细菌引起的疾病最多,是人与动物传染性疾病的元凶之一,包括革兰氏阳性和阴性菌、支原体、衣原体、立克次氏体、螺旋体等至少110个属;此外,已发现大约有100多种病毒、400多种真菌及多种寄生虫和阮病毒与人类和动物疾病的发生有关[3]。因此对环境中微生物污染情况及其带来的健康风险进行评估是十分必要的。目前对微生物污染的监测常基于少数病原微生物的检测,并不能综合评估环境微生物污染水平,例如水质安全检测常采用粪大肠菌群浓度作为唯一的微生物指标[4]。而且,常见的病原微生物检测方法常基于临床病原菌分析而发展,例如平板培养法、胶体金检测技术、酶联免疫分析技术、免疫磁珠分离技术及双功能抗体检测技术,这些方法在临床中广泛应用,然而由于这些方法具有工作量大、检测灵敏度低、培养时间长等缺陷,尤其环境介质较为复杂,导致这些方法在环境样本中的应用受到限制[5]。
随着分子生物学技术的发展,基于PCR技术、基因探针技术、借助于杂交的生物探针技术以及宏基因组测序技术等可以快速完成病原微生物的检测,不需要前期培养,但基于PCR和探针的技术仍局限于少数病原菌的检测,宏基因组测序技术具有费用高、周期长的缺点。本课题组前期的研究工作开发了一种基于TaqMan探针高通量荧光定量PCR方法(TaqMan-based high-throughput qPCR),可以同时检测33种病原微生物的68个标记基因,包括了可以引发人类胃肠道、肺炎、角膜炎等相关疾病病原微生物的标记基因。相比SYBR GREEN荧光定量PCR方法,TaqMan荧光定量PCR法中增加的探针序列使该方法更特异,荧光收集方式更准确。另外,使用该方法一次检测可同时进行5184个qPCR反应,特别适合用于大量样品的快速检测,故也具有低成本、高通量、方便快捷等优点,可以规避以上研究手段的缺点,基于该芯片我们前期在厦门13个海滨浴场水体中检测到7种病原菌[6]。因此,将该方法应用到其他环境中病原菌的检测,将为环境微生物污染监测和风险评估提供数据基础。
微生物污染来源的鉴定是环境微生物污染监测的另一个主要挑战,其对环境污染修复管理政策的实行具有重要意义。粪便污染是造成环境微生物污染的主要原因之一[7],不同宿主来源粪便对环境污染有着不同程度的危害,鉴别环境粪便污染来源及污染程度有助于环境微生物污染来源监管,从而促进环境保护。传统的粪大肠菌群等粪便污染指示微生物由于能够在自然环境中存活并繁殖,在各种动物的肠道中没有特异性等缺陷不能分辨粪便污染来源,无法准确评估水体微生物污染状况[8-9]。微生物源示踪技术(Microbial source tracking, MST)的出现解决了这一难题,其可以通过粪便污染宿主或者宿主相关的微生物的DNA序列作为特异标记物以鉴定粪便污染来源[10-12]。这些粪便污染宿主主要包括人类、牲畜(猪、牛、羊、马和兔)、宠物(狗和猫)、家禽(鸡和鸭)及野生动物(鹅和海鸥)等。环境中的粪便污染可能不止来源于一种宿主。目前多数研究采用微生物源示踪技术仅聚焦少数几种指示微生物的标记基因,无法综合评估环境中粪便污染的状况。本课题组前期的研究也建立粪便污染物的高通量qPCR检测技术,可以同时检测10种不同宿主的23个标记基因,包括了常见粪便污染源(人类、反刍动物、家禽、猪、狗)微生物源示踪标记基因,利用该芯片我们发现海滨浴场的粪便污染主要来源于人和狗[6, 13-30]。
污水处理厂汇聚人类生活污水包括人类排泄物等,由于富含有机质等,可能携带大量病原微生物,污水处理过程并不能完全去除所有微生物,其残留微生物随污泥农用或出水排放进入下游环境,危害人类健康。此外,有机粪肥也是病原微生物的一个储存环境,粪肥施用的农田土壤中也可能携带大量不同种类的病原微生物,一旦人群暴露到这些病原微生物中,将可能对人类的生命健康造成极大的危害。本研究利用前期研发的基于高通量qPCR检测技术的病原菌和粪便溯源标记基因芯片,对浙江省H市污水处理厂进出水、德州长期施加有机肥(污泥或鸡粪)或化肥土壤中的微生物污染及粪便污染溯源进行了研究,旨在探明污水处理厂及农田土壤中病原菌种类和分布情况,以及这些病原微生物污染的来源,为环境微生物污染源头管控及环境部门政策制定和管理提供数据基础。
高通量定量PCR研究环境中的微生物污染特征
Tracking microbial contaminants in environments by high-throughput quantitative PCR
-
摘要: 微生物污染(包括细菌、真菌、病毒、寄生虫)会引起多种传染病和寄生虫病,对环境安全和人体健康造成重要威胁。本研究利用可同时检测33种病原微生物以及10种不同粪便污染源的基于TaqMan探针的高通量qPCR检测技术,对污水处理厂进出水、长期施加有机肥(污泥或鸡粪)或化肥土壤中的微生物污染状况进行了研究。结果表明,污水处理厂中检测出的微生物污染种类和丰度较高,污染状况较严重,土壤环境微生物污染较小。在污水处理厂中,共检出13种人类病原微生物,进水中检测到的病原菌数目和丰度高于出水,其中,克雷伯氏肺炎杆菌和致病性大肠杆菌在污水处理厂进出水具有最高丰度,并发现污水处理厂中具有人类、猪、狗粪便污染;土壤中共检出3种病原菌,其中军团杆菌和棘阿米巴检测丰度最高,有机肥(污泥或鸡粪)施用显著增加土壤中病原菌丰度,同时发现这些土壤中存在家禽粪便污染。研究表明,污水处理设施虽可去除污水中部分微生物污染,但仍有相当数量的微生物污染可能排放到自然水体中,成为下游环境如土壤等中的微生物污染源,进而影响人类健康。Abstract: Microbial contamination, including pathogenic bacteria, fungi, viruses and parasites, can cause a variety of infectious and parasitic diseases, threatening environmental safety and human health. In this study, a TaqMan-based high-throughput qPCR approach, which could simultaneously quantify 33 human pathogens and 10 different sources of fecal pollution, was applied to investigate the microbial contamination in the influent and effluent of wastewater treatment plants (WWTPs) and the long-term fertilizer-applied soils (sludge, chicken manure, and chemical fertilizers). The results showed that the number and abundance of microbial contaminations in WWTP samples were higher, and the soil microbial pollution was less. A total of 13 human pathogens were detected in WWTPs, and influent harbored higher number of and more abundant pathogens than those in effluent. Klebsiella pneumoniae and enteropathogenic Escherichia coli were the dominant pathogens in WWTPs. The fecal pollutions from human, pig and dog were the main source of microbial contaminations in WWTPs. Soils were detected with three pathogens, of which Legionella spp. and Acanthamoeba spp. were predominant. The application of organic fertilizers (sewage sludge or chicken manure) significantly increased the abundance of pathogens. Livestock manure was the main pollution source of these fertilized soils. These data suggested that there is still a considerable amount of microbial contaminants in the effluent of WWTPs, despite sewage treatment facilities could remove a majority of microbial pollution in the sewage. These persistent microbial contaminants can serve as potential pollution source for the downstream environments, posing a potential health risk.
-
处理组
Treatment污泥/(t·hm−2)
Sewage sludge鸡粪/(t·hm−2)
Chicken manure尿素/(kg·hm−2)
Urea过磷酸盐/(kg·hm−2)
Superphosphate硫酸钾/(kg·hm−2)
Potassium sulphateCK 0 0 0.00 600 240 0.5N 0 0 65.25 600 240 1N 0 0 130.50 600 240 0.5SS 4.5 0 65.25 600 240 1SS 9 0 65.25 600 240 2SS 18 0 65.25 600 240 4SS 36 0 65.25 600 240 1CM 0 10 65.25 600 240 病原微生物
Pathogens指示基因
Gene target基因功能
Gene function引物与探针序列(5'-3',正向引物F,反向引物R,探针P)
Primes and probes (5'-3', F-forward primer;
R-reverse primer; P-TaqMan probe)Campylobacter jejuni/ C. coli cadF 结合蛋白
fibronectin-binding proteinF, CTGCTAAACCATAGAAATAAAATTTCTCAC;
R, CTTTGAAGGTAATTTAGATATGGATAATCGP, FAM-CATTTTGACGATTTTTGGCTTGA-MGB-NFQ Campylobacter jejuni mapA 膜相关蛋白
membrane-associated proteinF, CTGGTGGTTTTGAAGCAAAGATT;
R, CAATACCAGTGTCTAAAGTGCGTTTATP, FAM-TTGAATTCCAACATCGCTAATGTATAAAAGCCCTTT-BHQ1 hipO 马尿酸酶
hippuricaseF, TCCAAAATCCTCACTTGCCATT;
R, TGCACCAGTGACTATGAATAACGAP, FAM-TTGCAACCTCACTAGCAAAATCCACAGCT-BHQ1 Campylobacter coli ceuE 周质底物结合蛋白
periplasmic substrate binding proteinF, AAGCTCTTATTGTTCTAACCAATTCTAACA;
R, TCATCCACAGCATTGATTCCTAAP, FAM-TTGGACCTCAATCTCGCTTTGGAATCATT-BHQ1 cdtA 胀毒素
cytolethal distending toxinF, TGTCAAACAAAAAACACCAAGCTT;
R, CCTTTGACGGCATTATCTCCTTP, FAM-AAAATTTCCCGCCATACCACTTGTCCC-BHQ1 Campylobacter lari pepT 肽酶
peptidaseF, TTAGATTGTTGTGAAATAGGCGAGTT;
R, TGAGCTGATTTGCCTATAAATTCGP, FAM-TGAAAATTGGAACGCAGGTG-MGB-NFQ Vibrio cholera/V. parahaemolyticus toxR 毒素
toxinF, GTTTGGCGAGAGCAAGGTTT;
R, TCTCTTCTTCAACCGTTTCCAP, FAM-CGCAGAGTCGAAATGGCTTGG-MGB-NFQ Vibrio cholerae ctxA 霍乱毒素 A
cholera toxin AF, TTTGTTAGGCACGATGATGGAT;
R, ACCAGACAATATAGTTTGACCCACTAAGP, FAM-TGTTTCCACCTCAATTAGTTTGAGAAGTGCCC-BHQ1 total Vibrio cholerae ompW 外膜蛋白 W
outer membrane
protein WF1, AAGCTCCGCTCCTGTATTTGC;F2, ACTAGCCGCTCCTGTATTTGC R, GCTATTAACTGCCAACTCACTTTGAG;P, FAM-CACCAAGAAGGTGACTTT-MGB-NFQ Toxigenic Vibrio cholerae ctxA 霍乱毒素 A
cholera toxin AF, GCATAGAGCTTGGAGGGAAGAG;
R, CATCGATGATCTTGGAGCATTCP, FAM-CATCATGCACCGCCG-MGB-NFQ Clostridium perfringens cpe 肠毒素
enterotoxinF, AACTATAGGAGAACAAAATACAATAG;
R, TGCATAAACCTTATAATATACATATTCP, FAM-TCTGTATCTACAACTGCTGGTCCA-BHQ1 cpa α 毒素
α toxinF, AAAAGAAAGATTTGTAAGGCGCTTAT;
R, CCCAAGCGTAGACTTTAGTTGATGP, FAM-TGCCGCGCTAGCAACTAGCCTATGG-BHQ1 plc α 毒素
α toxinF, GCATGAGTCATAGTTGGGATGATT;
R, CCTGCTGTTCCTTTTTGAGAGTTAGP, FAM-TGCAGCAAAGGTAACTT-MGB-NFQ Salmonella enterica invA 侵袭蛋白
invasion proteinF, GTGAAATTATCGCCACGTTCGGGCAA;
R, CCCAAGCGTAGACTTTAGTTGATGP, FAM-TTATTGGCGATAGCCTGGCGGTGGGTTTTGTTG-BHQ1 Salmonella invA-Sal 侵袭蛋白
invasion proteinF, CGTTTCCTGCGGTACTGTTAATT;
R, TCATCGCACCGTCAAAGGAACCP, FAM-CCACGCTCTTTCGTCT-MGB-NFQ invA 侵袭蛋白
invasion proteinF, TCGGGCAATTCGTTATTGG;
R, GATAAACTGGACCACGGTGACAP, FAM-AAGACAACAAAACCCACCGC-MGB-NFQ Listeria monocytogenes Listeriolysin O 毒力因子
virulence factorF, TGCAAGTCCTAAGACGCCA;
R, CACTGCATCTCCGTGGTATACTAAP, FAM-CGATTTCATCCGCGTGTTTCTTTTCG-BHQ1 iap 入侵相关蛋白p60 F, AGTGCTATTATTGCTGAAGCTCAAAA;
R, TCCGTTACCACCCCATGAATinvasion associated protein p60 P, FAM-CACCTTGGAAAAGC-MGB-NFQ hlyA 毒力因子
virulence factorF, ACTTCGGCGCAATCAGTGA;
R, TTGCAACTGCTCTTTAGTAACAGCTTP, FAM-TGAACCTACAAGACCTTCCAGATTTTTCGGC-BHQ1 Shiga-toxigenic E. coli stx1 志贺氏毒素 1
Shiga toxin 1F, ACTTCTCGACTGCAAAGACGTATG;
R, ACAAATTATCCCCTGWGCCACTATCP, FAM-CTCTGCAATAGGTACTCCA-MGB-NFQ stx2 志贺氏毒素 2
Shiga toxin 2F, CCACATCGGTGTCTGTTATTAACC;
R, GGTCAAAACGCGCCTGATAGP, FAM-TTGCTGTGGATATACGAGG-MGB-NFQ enteropathogenic E. coli eae 黏附素
intiminF, CATTGATCAGGATTTTTCTGGTGATA;
R, CTCATGCGGAAATAGCCGTTAP, FAM-ATACTGGCGAGACTATTTCAA-MGB-NFQ bfpA 菌毛
Bundle-forming piliF, TGGTGCTTGCGCTTGCT;
R, CGTTGCGCTCATTACTTCTGP, FAM-CAGTCTGCGTCTGATTCCAA-MGB-NFQ enterohemorrhagic Escherichia coli O157:H7 stx1 志贺氏毒素 1
Shiga toxin 1F, GACTGCAAAGACGTATGTAGATTCG;
R, ATCTATCCCTCTGACATCAACTGCP, FAM-TGAATGTCATTCGCTCTGCAATAGGTACTC-BHQ1 stx2 志贺氏毒素 2
Shiga toxin 2F, ATTAACCACACCCCACCG;
R, GTCATGGAAACCGTTGTCACP, FAM-CAGTTATTTTGCTGTGGATATACGAGGGCTTG-BHQ1 eae 黏附素
intiminF, GTAAGTTACACTATAAAAGCACCGTCG;
R, TCTGTGTGGATGGTAATAAATTTTTGP, FAM-AAATGGACATAGCATCAGCATAATAGGCTTGCT-BHQ1 enteroaggregative E. coli aaiC VI 型分泌系统
type VI secretion systemF, ATTGTCCTCAGGCATTTCAC;
R, ACGACACCCCTGATAAACAAP, FAM-TAGTGCATACTCATCATTTAAG-MGB-NFQ aatA 转运蛋白
antiaggregation protein transporterF, CTGGCGAAAGACTGTATCAT;
R, TTTTGCTTCATAAGCCGATAGAP, FAM-TGGTTCTCATCTATTACAGACAGC-MGB-NFQ enterotoxigenic E. coli elt 热不稳定肠毒素
heat-labile enterotoxinF, TTCCCACCGGATCACCAA;
R, CAACCTTGTGGTGCATGATGAP, FAM-CTTGGAGAGAAGAACCCT-MGB-NFQ Shigella spp. ipaH 侵袭性质粒抗原 H
invasion plasmid antigen HF, CCTTTTCCGCGTTCCTTGA;
R, CGGAATCCGGAGGTATTGCP, FAM-CGCCTTTCCGATACCGTCTCTGCA-BHQ1 Shigella spp. ipaH-Shig1 侵袭性质粒抗原 H
invasion plasmid antigen HF, CTTGACCGCCTTTCCGATA;
R, AGCGAAAGACTGCTGTCGAAGP, FAM-AACAGGTCGCTGCATGGCTGGAA-BHQ1 Giardia lamblia β-Giardin P434 (P1) β-贾第虫素 A
β-Giardin gene assemblage AF, CCTCAAGAGCCTGAACGATCTC;
R, AGCTGGTCGTACATCTTCTTCCTTP, FAM-TTCTCCGTGGCAATGCCCGTCT-BHQ1 β-Giardin P434 (H3) β-贾第虫素 B
β-Giardin gene assemblage BF, CCTCAAGAGCCTGAACGACCTC;
R, AGCTGGTCATACATCTTCTTCCTCP, FAM-TTCTCCGTGGCGATGCCTGTCT-BHQ1 β-Giardin P241 β-贾第虫素
β-GiardinF, CATCCGCGAGGAGGTCAA;
R, GCAGCCATGGTGTCGATCTP, FAM-AAGTCCGCCGACAACATGTACCTAACGA-BHQ1 18S rRNA 18S 核糖体基因
18S rRNAF, GACGGCTCAGGACAACGGTT;
R, TTGCCAGCGGTGTCCGP, FAM-CCCGCGGCGGTCCCTGCTAG-BHQ1 Cryptosporidium parvum COWP 半胱氨酸蛋白酶抑制因子
oocystatinF, CAAATTGATACCGTTTGTCCTTCTG;
R, GGCATGTCGATTCTAATTCAGCTP, FAM-TGCCATACATTGTTGTCCTGACAAATTGAAT-BHQ1 Cryptosporidium species
human-pathogenic18S rRNA 18S 核糖体基因
18S rRNAF, GGGTTGTATTTATTAGATAAAGAACCA;
R, AGGCCAATACCCTACCGTCTP, FAM-TGACATATCATTCAAGTTTCTGAC-MGB-NFQ Entamoeba histolytica 18S rRNA 18S 核糖体基因
18S rRNAF, ATTGTCGTGGCATCCTAACTCA;
R, GCGGACGGCTCATTATAACAP, FAM-TCATTGAATGAATTGGCCATTT-MGB-NFQ Aeromonas hydrophilia aha1 黏附素
adherence factorsF, ACCGCTGCTCATTACTCTGATG;
R, CCAACCCAGACGGGAAGAAP, FAM-TGATGGTGAGCTGGTTG-MGB-NFQ Bacillus cereus/B. thuringiensis bceT 肠毒素
enterotoxinF, AATTACATTACCAGGACGTGCTTACTT;
R, TCCAAGCTGATTGGAATAGTTCATAAP, FAM-CAAGTTGGGAATAATG-MGB-NFQ Helicobacter pylori vacA 空泡毒素
vacuolating cytotoxinF, GAATTCCCTAACAAGGAATACGACTT;
R, CCAATCCCAACCTCCATCAAP, FAM-ACAGATCCCTTTTATCC-MGB-NFQ urea 脲酶亚基 α
urease subunit αF, CGTGGCAAGCATGATCCAT;
R, GGGTATGCACGGTTACGAGTTTP, FAM-TCAGGAAACATCGCTTCAATACCCACTT-BHQ1 16S rRNA 16S 核糖体基因
16S rRNAF, CTCATTGCGAAGGCGACCT;
R, TCTAATCCTGTTTGCTCCCCAP, FAM-ATTACTGACGCTGATTGCGCGAAAGC-BHQ1 Clostridium difficile tcdB 毒素 B
toxin BF, GGTATTACCTAATGCTCCAAATAG;
R, TTTGTGCCATCATTTTCTAAGCP, FAM-CCTGGTGTCCATCCTGTTTC-MGB-NFQ cdtA 胀毒素 A
cytolethal distending toxin AF, GATCTGGTCCTCAAGAATTTGGTT;
R, GCTTGTCCTTCCCATTTTGATTP, FAM-AACTCTTACTTCCCCTGAAT-MGB-NFQ cdtB 胀毒素 B
cytolethal distending toxin BF, AAAAGCTTCAGGTTCTTTTGACAAG;
R, TGATCAGTAGAGGCATGTTCATTTGP, FAM-CAAGAGATCCGTTAGTTGCAGCATATCCAATTGT-BHQ1 tcdA 毒素 A
toxin AF, CAGTCGGATTGCAAGTAATTGACAAT;
R, AGTAGTATCTACTACCATTAACAGTCTGCP, FAM-TTGAGATGATAGCAGTGTCAGGATTG-BHQ1 Cronobacter spp. ITS G 操纵子
G operonF, CCGGAACAAGCTGAAAATTGA;
R, TCTTCGTGCTGCGAGTTTGP, FAM-ACTCTGACACACCGCGCATTCCTG-BHQ1 MMS 大分子合成操纵子
macromolecular synthesis operonF, GGGATATTGTCCCCTGAAACAG;
R, CGAGAATAAGCCGCGCATTP, FAM-AGAGTAGTAGTTGTAGAGGCCGTGCTTCCGAAAG-BHQ1 Legionella pneumophila mip 巨噬细胞感染增强基因
macrophage infectivity potentiatorF, AAAGGCATGCAAGACGCTATG;
R, GAAACTTGTTAAGAACGTCTTTCATTTGP, FAM-TGGCGCTCAATTGGCTTTAACCGA-BHQ1 mip-Lpne 巨噬细胞感染增强基因
macrophage infectivity potentiatorF, ACCGATGCCACATCATTAGCT;
R, CCAAATCGGCACCAATGCP, FAM-CAGACAAGGATAAGTTGTC-MGB-NFQ Staphylococcus aureus sec 肠毒素 C
enterotoxin CF, CGTATTAGCAGAGAGCCAACCA;
R, GTGAATTTACTCGCTTTGTGCAAP, FAM-ACCCTACGCCAGATGA-MGB-NFQ nuc 热稳定性核酸酶
thermostable nucleaseF, CGCTACTAGTTGCTTAGTGTTAACTTTAGTTG;
R, TGCACTATATACTGTTGGATCTTCAGAAP, FAM-TGCATCACAAACAGATAACGGCGTAAATAGAAG-BHQ1 tufa 翻译延长因子
translation elongation factorF, CATGGTTGACGATGAAGAATTATTAGA;
R, TGGGAAGTCATATTCGCTTAATAAGTCP, FAM-AGTAGAAATGGAAGTTCG-MGB-NFQ Pseudomonas aeruginosa ecfX 胞质外σ功能因子
extracytoplasmic function σ factorF, CGCATGCCTATCAGGCGTT;
R, GAACTGCCCAGGTGCTTGCP, FAM-ATGGCGAGTTGCTGCGCTTCCT-BHQ1 gyrB DNA旋转酶亚基 B
DNA gyrase subunit BF, CCTGACCATCCGTCGCCACAAC;
R, CGCAGCAGGATGCCGACGCCP, FAM-CCGTGGTGGTAGACCTGTTCCCAGACC-BHQ1 regA 外毒素A调节剂
regulator for exotoxin AF, TGCTGGTGGCACAGGACAT;
R, TTGTTGGTGCAGTTCCTCATTGP, FAM-CAGATGCTTTGCCTCAA-MGB-NFQ Mycobacterium tuberculosis IS6110 插入序列 6110
insertion sequence 6110F, AGACGTTATCCACCATAC;
R, AGTGCATTGTCATAGGAGP, FAM-TCTCAGTACACATCGATCCGGT-BHQ1 IS6110-p 插入序列 6110
insertion sequence 6110F, CCGAGGCAGGCATCCA;
R, GATCGTCTCGGCTAGTGCATTP, FAM-TCGGAAGCTCCTATGAC-MGB-NFQ Leptospira spp. lipL32 脂蛋白
lipoproteinF, AAGCATTACCGCTTGTGGTG;
R, GAACTCCCATTTCAGCGATTP, FAM-AAAGCCAGGACAAGCGCCG-BHQ1 Streptococcus pneumoniae lytA 自融素
autocytolysinF, ACGCAATCTAGCAGATGAAGC;
R, TGTTTGGTTGGTTATTCGTGCP, FAM-TTTGCCGAAAACGCTTGATACAGGG-BHQ1 lytA-CDC 自融素
autocytolysinF, ACGCAATCTAGCAGATGAAGCA;
R, TCGTGCGTTTTAATTCCAGCTP, FAM-GCCGAAAACGCTTGATACAGGGAG-BHQ1 psaA 肺炎球菌表面黏附
pneumococcal surface adhesionF, GCCCTAATAAATTGGAGGATCTAATGA;
R, GACCAGAAGTTGTATCTTTTTTTCCGP, FAM-CTAGCACATGCTACAAGAATGATTGCAGAAAGAAA-BHQ1 cpsA 荚膜多糖生物合成
capsular polysaccharide biosynthesisF, GCTGTTTTAGCAGATAGTGAGATCGA;
R, TCCCAGTCGGTGCTGTCAP, FAM-AATGTTACGCAACTGACGAG-MGB-NFQ Mycobacterium avium subsp. paratuberculosis IS900 插入序列 900
insertion sequence 900F, AATGACGGTTACGGAGGTGGT;
R, GCAGTAATGGTCGGCCTTACCP, FAM-TCCACGCCCGCCCAGACAGGTTG-BHQ1 Acanthamoeba spp. 18S rRNA 18S 核糖体基因
18S rRNAF, CGACCAGCGATTAGGAGACG;
R, CCGACGCCAAGGACGACP, FAM-TGAATACAAAACACCACCATCGGCGC-BHQ1 Klebsiella pneumoniae phoE 外膜磷酸孔蛋白
outer membrane phosphate porinF, CCTGGATCTGACCCTGCAGTA;
R, CCGTCGCCGTTCTGTTTCP, FAM-CAGGGTAAAAACGAAGGC-MGB-NFQ Neisseria gonorrhoeae opa 混浊蛋白
opacity proteinF, GTTGAAACACCGCCCGG;
R, CGGTTTGACCGGTTAAAAAAAGATP, FAM-CCCTTCAACATCAGTGAAA-MGB-NFQ 宿主
Hosts标记物名称
Markers指示基因
Gene target引物与探针序列(5'-3'方向,正向引物F,反向引物R,探针P)
Primer and probe sequences(5'-3'; F-forward primer;
R-reverse primer; P-TaqMan probe)细菌
BacteriaBact2 细菌通用16S核糖体基因
16S rRNA gene for universal bacteriaF, CGGTGAATACGTTCCCGG;
R, TACGGCTACCTTGTTACGACTT;P, FAM-CTTGTACACACCGCCCGTC-MGB-NFQ 人
HumanHuman mtCytb 线粒体细胞色素b
Mitochondrial cytochrome bF, AGTCCCACCCTCACACGATTCTTT;
R, AGTAAGCCGAGGGCGTCTTTGATT;P, FAM-ACCCTTCATTATTGCAGCCCTAGCAGCACT-BHQ1 HumM2 脆弱拟杆菌假想蛋白BF3236,可能参与了细菌表面多糖和脂多糖的重构
Bacteroides fragilis Hypothetical protein BF3236 potentially involved in remodeling of bacterial surface polysaccharides and lipopolysaccharidesF, CGTCAGGTTTGTTTCGGTATTG;
R, TCATCACGTAACTTATTTATATGCATTAGC;P, FAM-TATCGAAAATCTCACGGATTAACTCTTGTGTACGC-BHQ1 HF183-BacR287 Bacteroides16S 核糖体基因
16S rRNA gene for BacteroidesF, ATCATGAGTTCACATGTCCG;
R, CTTCCTCTCAGAACCCCTATCC;P, FAM-CTAATGGAACGCATCCC-MGB-NFQ HF183- BFDrev Bacteroides 16S 核糖体基因
16S rRNA gene for BacteroidesF, ATCATGAGTTCACATGTCCG;
R, CGTAGGAGTTTGGACCGTGT;P, FAM- CTGAGAGGAAGGTCCCCCACATTGGA-BHQ1 B. fragilis gyrB Bacteroides fragilis DNA促旋酶B亚基
Bacteroides fragilis DNA gyrase B subunitF, GGCGGTCTTCCGGGTAAA;
R, CACACTTCTGCGGGTCTTTGT;P, FAM-TGGCCGACTGCTC-MGB-NFQ 家禽
PoultryChicken/duck ND5 线粒体NADH脱氢酶亚基5
Mitochondrial NADH dehydrogenase subunit 5F, ACCTCCCCCAACTAGC;
R, TTGCCAATGGTTAGGCAGGAG;P, FAM-TCAACCCATGCCTTCTT-MGB-NFQ Chicken/duck cytb 线粒体细胞色素b
Mitochondrial cytochrome bF, AAATCCCACCCCCTACTAAAAATAAT;
R, CAGATGAAGAAGAATGAGGCG;P, FAM-ACAACTCCCTAATCGACCT-MGB-NFQ Av43 Firmicutes 16S 核糖体基因
16S rRNA gene for FirmicutesF, GCAAGTTGAGCGGAGATATGG;
R, ATCGGCCTATCCCCCAATATA;P, FAM-CTCTTTATATTTTAGCAGCGAACG-BHQ1 Plprobe Bifidobacterium 16S 核糖体基因
16S rRNA gene for BifidobacteriumF, TTCGGGTTGTAAACCGCTTTT;
R, TACGTATTACCGCGGCTGCT;P, FAM-GAGAGTGAGTGTACCCGTT-MGB-NFQ 猪
PigPig-2-Bac Bacteroidales 16S 核糖体基因
16S rRNA gene for BacteroidalesF, GCATGAATTTAGCTTGCTAAATTTGAT;
R, ACCTCATACGGTATTAATCCGC;P, FAM-TCCACGGGATAGCC-MGB-NFQ Swine mtDNA Mitochondrial NADH dehydrogenase subunit 5
线粒体NADH脱氢酶亚基5F, ACAGCTGCACTACAAGCAATCC;
R, GGATGTAGTCCGAATTGAGCTGATTT;P, FAM-CATCGGAGACATTGGATTTGTCCTAT-BHQ1 牛
CowBoBac
(specifically for cow)Bacteroides 16S 核糖体基因
16S rRNA gene for BacteroidesF, GAAG(G/A)CTGAACCAGCCAAGTA;
R, GCTTATTCATACGGTACATACAAG;P, FAM-TGAAGGATGAAGGTTCTATGGATTGTAAACTT-BHQ1 BoBac
(specifically for ruminant)Bacteroides 16S 核糖体基因
16S rRNA gene for BacteroidesF, GAAG(G/A)CTGAACCAGCCAAGTA;
R, GCTTATTCATACGGTACATACAAG;P, FAM-TGAAGGATGAAGGTTCTATGGATTGTAAACTT-BHQ1 Cow mtDNA 线粒体细胞色素b
Mitochondrial cytochrome bF, GCAATACACTACACATCCGACACAA;
R, CAGATAAAAAACATTGAAGCTCCGT;P, FAM-CTCCTCTGTTACCCATATCTGCCGAGACG-BHQ1 CowM3 B. thetaiotaomicron 能量代谢和电子运输
B. thetaiotaomicron energy metabolism and electron transportF, CCTCTAATGGAAAATGGATGGTATCT;
R, CCATACTTCGCCTGCTAATACCTT;P, FAM-TTATGCATTGAGCATCGAGGCC-BHQ1 CowM2 B. fragilis 假想分泌蛋白
B. fragilis hypothetical secreted proteinF, CGGCCAAATACTCCTGATCGT;
R, GCTTGTTGCGTTCCTTGAGATAAT;P, FAM-AGGCACCTATGTCCTTTACCTCATCAACTACAGACA-BHQ1 狗
DogDog mtDNA 线粒体NADH脱氢酶亚基5
Mitochondrial NADH dehydrogenase subunit 5F, GGCATGCCTTTCCTTACAGGATTC;
R, GGGATGTGGCAACGAGTGTAATTAAG;P, FAM-TCATCGAGTCCGCTAACACGTCGAAT-BHQ1 DG37 毛螺菌科
LachnospiraceaeF, TTTTCTCCCACGGTCATCTG;
R, CTTGGTTATGGGCGACATTG;P, FAM-TTGAACGTTTAAAGGAGCAGGTGGCAG-BHQ1 BacCan-UCD Bacteroidales 16S 核糖体基因
16S rRNA gene for BacteroidalesF, GGAGCGCAGACGGGTTTT;
R, CAATCGGAGTTCTTCGTGATATCTA;P, FAM-TGGTGTAGCGGTGAAA-MGB-NFQ DG3 Bacteroides plebeius长链脂肪酸-CoA 连接酶
long chain fatty acid-CoA ligase for Bacteroides plebeiusF, TTTTCAGCCCCGTTGTTTCG;
R, TGAGCGGGCATGGTCATATT;P, FAM-AGTCTACGCGGGCGTACT-MGB-NFQ 鸭
DuckDuck-Bac Bacteroides 16S 核糖体基因
16S rRNA gene for BacteroidesF, TTGGTCAATGGGCGGAAG;
R, GCACATTCCCACACGTGAGA;P, FAM-TCCTTCACGCTACTTGG-MGB-NFQ 马
HorseHorseBact-UCD Bacteroidales 16S 核糖体基因
16S rRNA gene for BacteroidalesF1, TGCGTAGGCGGGAAGTCA;
F2, AGCGCAGGCGGAGTGAT;R1, GAATTCCATCGCCCTCTAGTGT;
R2, AGTTCCGCCTTCCTCTCCC;P, FAM-CAGCCGTAAAATMGYCGG-MGB-NFQ 羊
SheepSheep mtDNA 线粒体细胞色素b
Mitochondrial cytochrome bF, GCAATACACTATACACCTGACACAA;
R, CAGATAAAAAATATTGATGCCCCGT;P, FAM-CTCCTCTGTAACCCACATTTGCCGAGA-BHQ1 猫
CatCat mtDNA 线粒体NADH脱氢酶亚基5
Mitochondrial NADH dehydrogenase subunit 5F, AACTATTCATCGGCTGAGAGGGA;
R, GCTATGATAAAGCCTACGTCTCCAATG;P, FAM-ATGCAAACACTGCCGCCCTACAAGCAAT-BHQ1 -
[1] HAVELAAR A H, CAWTHORNE A, ANGULO F, et al. WHO initiative to estimate the global burden of foodborne diseases [J]. The Lancet, 2013, 381: S59. [2] 郑建玲. 《中国食品安全发展报告(2019)》: 我国食品安全面临五类风险挑战 [J]. 中国食品, 2020(3): 160. doi: 10.3969/j.issn.1000-1085.2020.23.083 ZHENG J L. Introduction to 2019 China development report on food safety: China's food safety faces five types of risks and challenges [J]. China Food, 2020(3): 160(in Chinese). doi: 10.3969/j.issn.1000-1085.2020.23.083
[3] 孟紫强. 《生态毒理学原理与方法》简介 [J]. 生态毒理学报, 2006, 1(4): 342. MENG Z Q. Principles and methods of Ecotoxicology [J]. Asian Journal of Ecotoxicology, 2006, 1(4): 342(in Chinese).
[4] 朱兴旺, 王绪鹏, 李青, 等. 《地表水环境质量标准》(GB 3838—2002)实践与建议[C]//中国环境科学学会2009年学术年会论文集. 武汉, 2009: 330-333. [5] 周威, 胡梁斌, 李红波, 等. 食物中食源性病原菌检测技术研究进展 [J]. 食品研究与开发, 2017, 38(9): 213-216. doi: 10.3969/j.issn.1005-6521.2017.09.048 ZHOU W, HU L B, LI H B, et al. Advances in detection of foodborne pathogens in food [J]. Food Research and Development, 2017, 38(9): 213-216(in Chinese). doi: 10.3969/j.issn.1005-6521.2017.09.048
[6] AN X L, WANG J Y, PU Q, et al. High-throughput diagnosis of human pathogens and fecal contamination in marine recreational water [J]. Environmental Research, 2020, 190: 109982. doi: 10.1016/j.envres.2020.109982 [7] 李宗来, 宋兰合. WHO《饮用水水质准则》第四版解读 [J]. 给水排水, 2012, 48(7): 9-13. LI Z L, SONG L H. Interpretation of the Guidelines for drinking-water quality (fourth edition) issued by World Health Organization [J]. Water & Wastewater Engineering, 2012, 48(7): 9-13(in Chinese).
[8] 王耀兵, 苏洁, 杨玉敏, 等. 一种粪便污染源识别新技术: 微生物源示踪[J]. 海洋环境科学, 2008, 27(增刊2): 122-128. WANG Y B, SU J, YANG Y M, et al. New technology of identification of fecal pollution—microbial source tracking[J]. Marine Environmental Science, 2008, 27(Sup 2): 122-128(in Chinese).
[9] 段传人, 刘爱喜, 王贵学, 等. 应用肠道微生物示踪地表水粪便污染的研究进展 [J]. 微生物学通报, 2013, 40(12): 2319-2329. DUAN C R, LIU A X, WANG G X, et al. Research progress of using intestinal microbes to track the sources of fecal pollution in surface water [J]. Microbiology China, 2013, 40(12): 2319-2329(in Chinese).
[10] WIGGINS B A. Discriminant analysis of antibiotic resistance patterns in fecal streptococci, a method to differentiate human and animal sources of fecal pollution in natural waters [J]. Applied and Environmental Microbiology, 1996, 62(11): 3997-4002. doi: 10.1128/aem.62.11.3997-4002.1996 [11] PARVEEN S, MURPHREE R L, EDMISTON L, et al. Association of multiple-antibiotic-resistance profiles with point and nonpoint sources of Escherichia coli in Apalachicola Bay [J]. Applied and Environmental Microbiology, 1997, 63(7): 2607-2612. doi: 10.1128/aem.63.7.2607-2612.1997 [12] SCOTT T M, ROSE J B, JENKINS T M, et al. Microbial source tracking: Current methodology and future directions [J]. Applied and Environmental Microbiology, 2002, 68(12): 5796-5803. doi: 10.1128/AEM.68.12.5796-5803.2002 [13] LAYTON A, MCKAY L, WILLIAMS D, et al. Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water [J]. Applied and Environmental Microbiology, 2006, 72(6): 4214-4224. doi: 10.1128/AEM.01036-05 [14] CHEN Q L, AN X L, LI H, et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil [J]. Environment International, 2016, 92/93: 1-10. doi: 10.1016/j.envint.2016.03.026 [15] KILDARE B J, LEUTENEGGER C M, MCSWAIN B S, et al. 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: A Bayesian approach [J]. Water Research, 2007, 41(16): 3701-3715. doi: 10.1016/j.watres.2007.06.037 [16] GREEN H C, HAUGLAND R A, VARMA M, et al. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples [J]. Applied and Environmental Microbiology, 2014, 80(10): 3086-3094. doi: 10.1128/AEM.04137-13 [17] LI B, JU F, CAI L, et al. Profile and fate of bacterial pathogens in sewage treatment plants revealed by high-throughput metagenomic approach [J]. Environmental Science & Technology, 2015, 49(17): 10492-10502. [18] 赵仲麟, 李淑英, 李燕, 等. 水中病原微生物分子检测技术研究进展 [J]. 生物技术通报, 2012(1): 41-45. ZHAO Z L, LI S Y, LI Y, et al. Research advances in molecular detection techniques of waterborne pathogens [J]. Biotechnology Bulletin, 2012(1): 41-45(in Chinese).
[19] MUEGGE B D, KUCZYNSKI J, KNIGHTS D, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans [J]. Science, 2011, 332(6032): 970-974. doi: 10.1126/science.1198719 [20] OKABE S, OKAYAMA N, SAVICHTCHEVA O, et al. Quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater [J]. Applied Microbiology and Biotechnology, 2007, 74(4): 890-901. doi: 10.1007/s00253-006-0714-x [21] MIESZKIN S, FURET J P, CORTHIER G, et al. Estimation of pig fecal contamination in a river catchment by real-time PCR using two pig-specific Bacteroidales 16S rRNA genetic markers [J]. Applied and Environmental Microbiology, 2009, 75(10): 3045-3054. doi: 10.1128/AEM.02343-08 [22] KOBAYASHI A, SANO D, HATORI J, et al. Chicken-and duck-associated Bacteroides-Prevotella genetic markers for detecting fecal contamination in environmental water [J]. Applied Microbiology and Biotechnology, 2013, 97(16): 7427-7437. doi: 10.1007/s00253-012-4469-2 [23] SHANKS O C, KELTY C A, SIVAGANESAN M, et al. Quantitative PCR for genetic markers of human fecal pollution [J]. Applied and Environmental Microbiology, 2009, 75(17): 5507-5513. doi: 10.1128/AEM.00305-09 [24] LEE C S, LEE J. Evaluation of new gyrB-based real-time PCR system for the detection of B. fragilis as an indicator of human-specific fecal contamination [J]. Journal of Microbiological Methods, 2010, 82(3): 311-318. doi: 10.1016/j.mimet.2010.07.012 [25] ZHUANG F F, LI H, ZHOU X Y, et al. Quantitative detection of fecal contamination with domestic poultry feces in environments in China [J]. AMB Express, 2017, 7(1): 1-8. doi: 10.1186/s13568-016-0313-x [26] WANG H, EDWARDS M, FALKINHAM J O III, et al. Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and Amoeba hosts in two chloraminated drinking water distribution systems [J]. Applied and Environmental Microbiology, 2012, 78(17): 6285-6294. doi: 10.1128/AEM.01492-12 [27] 庄芳芳, 苏建强, 陈辉煌, 等. 基于高通量定量PCR研究城市化小流域微生物污染特征 [J]. 生态毒理学报, 2017, 12(5): 141-152. doi: 10.7524/AJE.1673-5897.20170307003 ZHUANG F F, SU J Q, CHEN H H, et al. Characterization of microbial contaminants using high-throughput quantitative PCR in a small urbanizing catchment [J]. Asian Journal of Ecotoxicology, 2017, 12(5): 141-152(in Chinese). doi: 10.7524/AJE.1673-5897.20170307003
[28] GREEN H C, WHITE K M, KELTY C A, et al. Development of rapid canine fecal source identification PCR-based assays [J]. Environmental Science & Technology, 2014, 48(19): 11453-11461. [29] ISHII S, SEGAWA T, OKABE S. Simultaneous quantification of multiple food- and waterborne pathogens by use of microfluidic quantitative PCR [J]. Applied and Environmental Microbiology, 2013, 79(9): 2891-2898. doi: 10.1128/AEM.00205-13 [30] FUHRMEISTER E R, ERCUMEN A, PICKERING A J, et al. Predictors of enteric pathogens in the domestic environment from human and animal sources in rural Bangladesh [J]. Environmental Science & Technology, 2019, 53(17): 10023-10033. [31] LANATA C F, FISCHER-WALKER C L, OLASCOAGA A C, et al. Global causes of diarrheal disease mortality in children <5 years of age: A systematic review [J]. PLoS One, 2013, 8(9): e72788. doi: 10.1371/journal.pone.0072788 [32] SHANNON K E, LEE D Y, TREVORS J T, et al. Application of real-time quantitative PCR for the detection of selected bacterial pathogens during municipal wastewater treatment [J]. Science of the Total Environment, 2007, 382(1): 121-129. doi: 10.1016/j.scitotenv.2007.02.039 [33] 冉艳. 肺炎克雷伯菌荧光定量PCR检测方法的建立和临床应用[D]. 杭州: 浙江大学, 2015. RAN Y. Development and clinical application of real-time PCR in detection of Klebsiella pneumoniae[D]. Hangzhou: Zhejiang University, 2015(in Chinese).
[34] 徐璇, 钟礼立, 张兵, 等. 荧光实时定量PCR检测铜绿假单胞菌方法建立及价值 [J]. 中国医师杂志, 2006(12): 1614-1617. doi: 10.3760/cma.j.issn.1008-1372.2006.12.012 XU X, ZHONG L L, ZHANG B, et al. Development and evaluation of fluorescence real-time quantitative PCR for detecting Pseudomonas aeruginosa [J]. Journal of Chinese Physician, 2006(12): 1614-1617(in Chinese). doi: 10.3760/cma.j.issn.1008-1372.2006.12.012
[35] 路凤, 金银龙, 程义斌. 军团菌病的流行概况 [J]. 国外医学(卫生学分册), 2008(2): 78-83. LU F, JIN Y L, CHENG Y B. The prevalent status of Legionellosis [J]. Foreign Medical Sciences (Section Hygiene), 2008(2): 78-83(in Chinese).
[36] 韩漫漫, 赵蕊, 连欢, 等. 棘阿米巴角膜炎的研究进展 [J]. 中国新通信, 2019, 21(22): 224. HAN M M, ZHAO R, LIAN H, et al. Research progress of Acanthamoeba keratitis [J]. China New Telecommunications, 2019, 21(22): 224(in Chinese).
[37] HEATON J C, JONES K. Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: A review [J]. Journal of Applied Microbiology, 2008, 104(3): 613-626. doi: 10.1111/j.1365-2672.2007.03587.x [38] TYLER H L, TRIPLETT E W. Plants as a habitat for beneficial and/or human pathogenic bacteria [J]. Annual Review of Phytopathology, 2008, 46: 53-73. doi: 10.1146/annurev.phyto.011708.103102 [39] BARAK J D, SCHROEDER B K. Interrelationships of food safety and plant pathology: The life cycle of human pathogens on plants [J]. Annual Review of Phytopathology, 2012, 50(1): 241-266. doi: 10.1146/annurev-phyto-081211-172936 [40] ISLAM M, DOYLE M P, PHATAK S C, et al. Persistence of enterohemorrhagic Escherichia coli O157: H7 in soil and on leaf lettuce and parsley grown in fields treated with contaminated manure composts or irrigation water [J]. Journal of Food Protection, 2004, 67(7): 1365-1370. doi: 10.4315/0362-028X-67.7.1365 [41] REDDY K, FENG K L. Survival and migration of pathogenic and indicator microorganisms in the organic wastes-deposited soil [J]. Research of Environmental Sciences, 1984(3): 28-38. [42] HOUSSIN T, CRAMER J, GROJSMAN R, et al. Ultrafast, sensitive and large-volume on-chip real-time PCR for the molecular diagnosis of bacterial and viral infections [J]. Lab on a Chip, 2016, 16(8): 1401-1411. doi: 10.1039/C5LC01459J