-
硝基呋喃类药物是一类包括呋喃西林(nitrofurazone,SEM)、呋喃唑酮(furazolidone,AOZ)、呋喃它酮(furMtadone,AMOZ)和呋喃妥因(nitrofurantoin,AHD)等4种代谢产物的抗菌药物[1-2],因其对部分革兰氏性菌、真菌和原虫具有抑制与杀灭作用而曾被广泛用于淡水养殖业[3-4]。研究表明残留的硝基呋喃类药物可能会通过食物链危害人体健康[5-6]。尽管我国农业农村部在193号公告中明确规定了硝基呋喃类药物及代谢物不得用于可食动物,但仍然存在部分淡水鱼养殖户在利益驱使下非法滥用硝基呋喃类药物[7-8]。因此,对硝基呋喃类药物进行严密监控很有必要。
目前,国内外报道用于检测水产品中硝基呋喃类药物的方法有酶联免疫法(ELISA)[9]、高效液相色谱法(HPLC)[10]、高效液相色谱质谱联用法(HPLC-MS)[11-12]、高效液相色谱串联质谱法(HPLC-MS/MS)[13-15]等。其中ELISA法一般用于定性筛查且阳性样品需要进一步确证;而HPLC法与HPLC-MS法存在灵敏度较低问题;HPLC-MS/MS法可同时进行高质量定性和定量分析,已被相应标准所采用[16-17],但该方法前处理及进样时间过长且多局限于单一基质样品[18-19]。此外,“农业部783号公告-1-2006”所述方法中,虽然4种硝基呋喃类代谢物保留得到增强且各目标物分离度较好,但峰形较宽,检测时间长效率较低,不利于大批量样品的快速检测。因此,探讨建立一种能够快速、准确检测多种鱼肉中硝基呋喃类代谢物的方法显得很有必要。
本研究采用超高效液相色谱-串联质谱法(UPLC-MS/MS),在农业部783号公告-1-2006和GB/T 20752—2006的基础上,通过优化前处理步骤及色谱和质谱分析条件,构建用于快速检测乌鳢、鲫鱼、以及鲢鱼和草鱼等4种人工养殖淡水鱼中硝基呋喃类药物代谢物的检测方法。该方法简便、快捷、高效,可为人工养殖多种淡水鱼中硝基呋喃类代谢物的快速检测监控提供新的思路。
UPLC-MS/MS法快速检测人工养殖淡水鱼中硝基呋喃类代谢物
Rapid detection of nitrofuran metabolites in cultured freshwater fish by UPLC-MS/MS
-
摘要: 建立超高效液相色谱-串联质谱法(UPLC-MS/MS)快速检测人工养殖淡水鱼中AHD、AMOZ、AOZ、SEM等硝基呋喃类代谢物的分析方法。向鲜活乌鳢、鲢鱼、鲫鱼和草鱼试样中分别加入甲醇-水标准混合溶液,震荡并离心后弃去液体,保留残留物,残留物经盐酸水解,邻硝基苯甲醛酸性条件下衍生,利用乙酸乙酯提取,再用ACQUIYUPLC BEH C18色谱分析柱洗脱,电喷雾离子源(ESI)下以多重反应监测(MRM)正离子模式扫描进行检测,内标法定量。乌鳢、鲢鱼、鲫鱼和草鱼中4种硝基呋喃代谢物浓度在0.1—20 ng·mL−1范围内线性关系良好,相关系数均>0.9953,检出限均为0.25 μg·kg−1;平均回收率在97.6%—107.8%之间,相对标准偏差RSD在3.1%—9.6%之间。该方法简单高效,具有准确性好、灵敏度高、重现性强等特点,适用于多种人工养殖淡水鱼中硝基呋喃类代谢物的快速检测。
-
关键词:
- 超高效液相色谱串联质谱法 /
- 人工养殖 /
- 淡水鱼 /
- 硝基呋喃类代谢物 /
- 快速检测
Abstract: To establish an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the rapid detection of nitrofuran metabolites such as AHD, AMOZ, AOZ and SEM in cultured freshwater fish. The samples of fresh snakehead fish, silver carp, crucian carp and grass carp were respectively added with methanol-water mixed solution for shock and centrifugation. After shaking and centrifugation, discard the liquid to retain the residue, the residues were hydrolyzed with hydrochloric acid, derived with o-nitrobenzaldehyde under acidic conditions, extracted with ethyl acetate, and then purified with ACQUIYUPLC BEH C18 chromatographic analysis column elution. Multiple response monitoring (MRM) positive ion mode scanning was used for detection under the electrospray ion source (ESI), and quantification was carried out by internal standard method. The linear range of four nitrofuran metabolites in mullet, silver carp, crucian carp and grass carp was 0.1 ng·mL−1 to 20 ng·mL−1, the correlation coefficients were >0.9953, and the detection limits were 0.25 μg·kg−1. The relative standard deviations (RSD) ranged from 3.1% to 9.6%, and the average recoveries ranged from 97.6% to 107.8%. The method is simple, efficient, accurate, sensitive and reproducible. It is suitable for the rapid detection of nitrofuran metabolites in a variety of cultured freshwater fish. -
表 1 梯度洗脱条件
Table 1. Gradient elution conditions
时间/min Time A/% B/% 0 95 5 0.6 95 5 2.5 10 90 3.0 10 90 4.5 95 5 表 2 硝基呋喃代谢物及其同位素内标物质谱分析参数
Table 2. Analysis of nitrofuran internal standard and its metabolite mass spectrometry
化合物名称
Compounds母离子
Parent ion(m/z)子离子
Daughter ion(m/z)锥孔电压/V
Taper voltage碰撞能量/eV
Collision energy保留时间/min
Retention timeAMOZ 335 291*,262 28 11,20 1.64 AMOZ-D5 340 296 32 11 1.64 SEM 209 166*,192 30 14,9 1.93 SEM·HCl-13C-15N2 212 168 30 11 1.93 AHD 249 134*,104 30 9,12 1.96 AHD-13C3 252 134 28 15 1.96 AOZ 236 134*,104 28 11,20 2.05 AOZ-D4 240 134 30 12 2.05 注:带*的离子为定量离子.
Note: The ion with " * " is qualitative ion.表 3 不同比例洗涤液对回收率和精密度的影响(n=6)
Table 3. The influence of different proportions of washing liquid on recovery rate and precision
序号 No. 甲醇∶水 Methanol∶Water 回收率/% Recovery 精密度/% RSD 1 1∶1 95.8 6.3 2 2∶1 89.8 5.9 3 4∶1 90.1 5.7 4 6∶1 93.1 6.0 5 8∶1 94.3 6.1 6 10∶1 93.7 3.8 表 4 不同萃取溶剂体积与提取次数对回收率的影响(n=6)
Table 4. The influence of different extraction solvent volume and extraction times on recovery (n=6)
提取次数
Extraction times溶剂体积 Solvent volume 4 mL 6 mL 8 mL 10 mL 12 mL 5 mL×2 10 mL×1 1次 85.2% 84.7% 85.0% 88.0% 89.6% 92.6% 88.0% 2次 92.0% 94.3% 96.0 96.8% 94.2% 3次 87.9% 93.7 96.5 96.5% 93.4% 表 5 4种硝基呋喃类代谢物在不同养殖鱼中的基质效应
Table 5. Matrix effects of four nitrofuran metabolites in different cultured fish
分析物
Analytes基质效应/% Matrix effect 乌鳢 Snakehead fish 鲢鱼 Silver carp 鲫鱼 Crucian carp 草鱼 Grass carp AMOZ 97.9 126.3 73.5 101.3 SEM 103.5 121.5 123.6 97.5 AHD 99.2 126.1 77.6 99.3 AOZ 106.3 130.2 129.6 112.7 表 6 养殖鱼样品基质中硝基呋喃类代谢物的线性关系和方法检出限
Table 6. Linear relationships and detection limits of nitrofuran metabolites in the matrix of cultured fish samples
品种
Varieties分析物
Analytes线性方程
Linear equation相关系数(r)
Correlation coefficient检出限/(μg·kg−1)
LOD定量限/(μg·kg−1)
LOQ乌鳢 AMOZ y=0.715724 x + 0.0548122 0.997423 0.25 0.80 乌鳢 SEM y=0.660234 x + 0.070156 0.998871 0.25 0.80 AHD y=0.655721 x + 0.0891361 0.996414 0.25 0.80 AOZ y=0.851029 x + 0.0264705 0.996372 0.25 0.80 鲢鱼 AMOZ y=0.14741 x − 0.0440801 0.998282 0.25 0.80 SEM y=0.177392 x − 0.0182822 0.997467 0.25 0.80 AHD y=0.124583 x + 0.0116315 0.995397 0.25 0.80 AOZ y=0.169779 x − 0.0155245 0.999737 0.25 0.80 鲫鱼 AMOZ y=0.735794 x − 0.0498112 0.998424 0.25 0.80 SEM y=0.760354 x + 0.060856 0.995881 0.25 0.80 AHD y=0.605711 x + 0.0881371 0.995412 0.25 0.80 AOZ y=0.801019 x + 0.00674701 0.997370 0.25 0.80 草鱼 AMOZ y=0.14741 x − 0.0440801 0.998282 0.25 0.80 SEM y=0.177392 x − 0.0182822 0.997467 0.25 0.80 AHD y=0.124583 x + 0.0116315 0.995397 0.25 0.80 AOZ y=0.169779 x − 0.0155245 0.999737 0.25 0.80 表 7 硝基呋喃代谢物在不同养殖鱼肉中的加标回收率与精密度(n = 6)
Table 7. Recovery and precision of nitrofuran metabolites in different cultured fish (n = 6)
分析物
Analytes品种
Varieties1.0 μg·kg−1 2.0 μg·kg−1 10.0 μg·kg−1 回收率/%
Recovery精密度/%
RSD回收率/%
Recovery精密度/%
RSD回收率/%
Recovery精密度/%
RSDAMOZ 乌鳢 98.6 3.6 99.4 5.6 99.3 3.3 鲢鱼 99.1 4.2 98.4 6.1 99.6 4.1 鲫鱼 98.1 4.4 98.1 5.9 99.0 3.9 草鱼 102.4 3.9 99.4 7.1 97.8 4.4 SEM 乌鳢 98.5 7.1 97.9 6.0 98.3 6.3 鲢鱼 97.9 9.1 97.7 5.4 97.9 7.1 鲫鱼 97.7 8.3 99.2 6.0 100.6 6.3 草鱼 99.3 7.7 105.6 7.2 99.0 5.4 AHD 乌鳢 97.6 6.1 101.4 7.4 98.7 3.8 鲢鱼 97.9 4.3 99.0 8.2 99.4 4.5 鲫鱼 100.3 7.3 102.1 9.6 98.2 5.1 草鱼 107.8 6.3 99.7 8.1 99.6 5.5 AOZ 乌鳢 99.2 8.1 105.2 7.4 99.3 6.0 鲢鱼 98.1 8.5 99.8 7.9 98.6 6.3 鲫鱼 101.2 7.9 104.1 9.5 100.4 5.7 草鱼 99.3 8.0 100.9 8.2 107.7 5.2 表 8 质控测试样品验证结果(n=2)
Table 8. Quality control test sample validation results
样品标号
Sample label分析物
Analytes检测结果/(μg·kg−1) Detection results GB/T 20752—2006 本方法 质控样# AOZ 5.70 5.80 质控样# AMOZ 5.40 5.55 -
[1] KULIKOVSKII A V, GORLOV I F, SLOZHENKINA M I, et al. Determination of nitrofuran metabolites in muscular tissue by high-performance liquid chromatography with mass spectrometric detection [J]. Journal of Analytical Chemistry, 2019, 74(9): 906-912. doi: 10.1134/S106193481907013X [2] ZHANG Y B, QIAO H O, CHEN C, et al. Determination of nitrofurans metabolites residues in aquatic products by ultra-performance liquid chromatography-tandem mass spectrometry [J]. Food Chemistry, 2016, 192: 612-617. doi: 10.1016/j.foodchem.2015.07.035 [3] WANG Q, LIU Y C, WANG M Y, et al. A multiplex immunochromatographic test using gold nanoparticles for the rapid and simultaneous detection of four nitrofuran metabolites in fish samples [J]. Analytical and Bioanalytical Chemistry, 2018, 410(1): 223-233. doi: 10.1007/s00216-017-0714-y [4] WANG J, CHANG X X, ZUO X W, et al. A multiplex immunochromatographic assay employing colored latex beads for simultaneously quantitative detection of four nitrofuran metabolites in animal-derived food [J]. Food Analytical Methods, 2019, 12(2): 503-516. doi: 10.1007/s12161-018-1381-0 [5] 郭添荣, 张崟, 叶梅, 等. 中国水产食品质量及安全控制研究进展 [J]. 肉类研究, 2019, 33(5): 67-72. doi: 10.7506/rlyj1001-8123-20190311-051 GUO T R, ZHANG Y, YE M, et al. A review of recent advances in quality and safety control of aquatic products in China [J]. Meat Research, 2019, 33(5): 67-72(in Chinese). doi: 10.7506/rlyj1001-8123-20190311-051
[6] REJCZAK T, TUZIMSKI T. Recent trends in sample preparation and liquid chromatography/mass spectrometry for pesticide residue analysis in food and related matrixes [J]. Journal of AOAC INTERNATIONAL, 2015, 98(5): 1143-1162. doi: 10.5740/jaoacint.SGE1_Rejczak [7] LI Y, ZHANG J Z, JIN Y, et al. Hybrid quadrupole-orbitrap mass spectrometry analysis with accurate-mass database and parallel reaction monitoring for high-throughput screening and quantification of multi-xenobiotics in honey [J]. Journal of Chromatography A, 2016, 1429: 119-126. doi: 10.1016/j.chroma.2015.11.075 [8] 郭添荣, 柯欢, 吴文林, 等. 动物源食品中兽药残留检测方法的影响因素分析 [J]. 农产品加工, 2020(8): 63-68. GUO T R, KE H, WU W L, et al. Analysis of influencing factors of veterinary drug residue detection technology in foods of animal origin [J]. Farm Products Processing, 2020(8): 63-68(in Chinese).
[9] SHEN J Z, WANG W J, XIA X, et al. Determination of four nitrofuran metabolites and chloramphenicolin biological samples using enzyme-linked immunosorbent assay [J]. Analytical Letters, 2013, 46(9): 1404-1418. doi: 10.1080/00032719.2012.762583 [10] 唐红梅, 曾芳, 李成洪. 食品中硝基呋喃类药物及其代谢物残留检测的研究进展 [J]. 食品安全质量检测学报, 2016, 7(10): 3952-3959. TANG H M, ZENG F, LI C H. Progress on the detection of nitrofurans drugs residues and their metabolites in food [J]. Journal of Food Safety & Quality, 2016, 7(10): 3952-3959(in Chinese).
[11] 李仲超. 液相色谱-质谱同时测定水产品中78种兽药残留 [J]. 食品科学, 2014, 35(16): 217-221. doi: 10.7506/spkx1002-6630-201416042 LI Z C. Simultaneous determination of veterinary drug residues in aquatic products by liquid chromatography-tandem mass spectrometry(LC-MS-MS) [J]. Food Science, 2014, 35(16): 217-221(in Chinese). doi: 10.7506/spkx1002-6630-201416042
[12] 张艺蓓, 岳田利, 乔海鸥, 等. 陕西省水产品中4种硝基呋喃代谢物的检测 [J]. 西北农林科技大学学报(自然科学版), 2015, 43(10): 195-203. ZHANG Y B, YUE T L, QIAO H O, et al. Determination of four nitrofurans metabolites residues in aquatic products in Shaanxi Province [J]. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(10): 195-203(in Chinese).
[13] 赵东豪, 黎智广, 王旭峰, 等. 高效液相色谱-串联质谱法检测水产品中硝基呋喃类代谢物的优化研究 [J]. 南方水产科学, 2015, 11(6): 58-64. doi: 10.3969/j.issn.2095-0780.2015.06.008 ZHAO D H, LI Z G, WANG X F, et al. Optimization of determination of nitrofuran metabolites in aquatic products by liquid chromatography tandem mass spectrometry [J]. South China Fisheries Science, 2015, 11(6): 58-64(in Chinese). doi: 10.3969/j.issn.2095-0780.2015.06.008
[14] 马骏, 罗华明, 张玲茜. 液相色谱串联质谱测定水产品中硝基呋喃类代谢物残留 [J]. 浙江农业科学, 2016, 57(4): 558-562,610. MA J, LUO H M, ZHANG L (Q /X). Determination of nitrofuran metabolites in aquatic products by liquid chromatography tandem mass spectrometry [J]. Journal of Zhejiang Agricultural Sciences, 2016, 57(4): 558-562,610(in Chinese).
[15] 王狄, 张嘉楠. 超高效液相色谱串联质谱法对水产品中硝基呋喃代谢物的测定 [J]. 河北渔业, 2016(7): 47-51. doi: 10.3969/j.issn.1004-6755.2016.07.019 WANG D, ZHANG J N. Determination of nitrofuran metabolites in aquatic products by ultra performance liquid chromatography tandem mass spectrometry [J]. Hebei Fisheries, 2016(7): 47-51(in Chinese). doi: 10.3969/j.issn.1004-6755.2016.07.019
[16] 周纯洁, 候美玲, 何春兰, 等. LC-MS/MS技术在食品中农药多残留分析的应用进展 [J]. 食品工业科技, 2019, 40(13): 283-286,298. ZHOU C J, HOU M L, HE C L, et al. Progress on application of LC-MS/MS technology in pesticide multiresidue analysis for food [J]. Science and Technology of Food Industry, 2019, 40(13): 283-286,298(in Chinese).
[17] 姜艳彬, 单吉浩, 王莹, 等. LC-MS/MS技术在药物代谢研究中的应用进展 [J]. 药物分析杂志, 2014, 34(3): 385-391. doi: 10.16155/j.0254-1793.2014.03.022 JIANG Y B, SHAN J H, WANG Y, et al. Application progress of LC-MS/MS technology in drug metabolism research [J]. Chinese Journal of Pharmaceutical Analysis, 2014, 34(3): 385-391(in Chinese). doi: 10.16155/j.0254-1793.2014.03.022
[18] 王杰, 裴斐, 李彭, 等. 不同前处理方法对猪组织中喹诺酮类兽药残留检测效果对比 [J]. 食品科学, 2018, 39(18): 309-314. doi: 10.7506/spkx1002-6630-201818047 WANG J, PEI F, LI P, et al. Comparison of different sample pretreatments for the analysis of quinolone residues in porcine tissues [J]. Food Science, 2018, 39(18): 309-314(in Chinese). doi: 10.7506/spkx1002-6630-201818047
[19] 李中权, 张芳, 苏越, 等. 质谱直接定量分析技术的应用进展 [J]. 质谱学报, 2018, 39(2): 129-140. doi: 10.7538/zpxb.2017.0053 LI Z Q, ZHANG F, SU Y, et al. Advances in direct quantification analysis by mass spectrometry [J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(2): 129-140(in Chinese). doi: 10.7538/zpxb.2017.0053
[20] 王立丹. QuEChERS结合超高效液相色谱-高分辨质谱法测定畜禽产品中兽药残留的研究[D]. 广州: 华南理工大学, 2019. WANG L D. Determination of veterinary drug residues in livestock and poultry products by QuEChERS combined with ultra performance liquid chromatography-high resolution mass spectrometry[D]. Guangzhou: South China University of Technology, 2019(in Chinese).
[21] 余静. 传统腌腊鱼加工工艺优化及其对产品特性的影响[D]. 成都: 成都大学, 2019. YU J. Optimization of processing technology of traditional salted fish and its influence on product characteristics[D]. Chengdu: Chengdu University, , 2019(in Chinese).
[22] 农业部783号公告-1-2006 水产品中硝基呋喃类代谢物残留量的测定液相色谱-串联质谱法[S]. Announcement of the Ministry of Agriculture 783-1-2006 Determination of nitrofuran metabolic residues in aquatic products by LC-MS/MS method [S](in Chinese).
[23] GB/T 20752—2006 猪肉、牛肉、鸡肉、猪肝和水产品中硝基呋喃类代谢物残留量的测定 液相色谱-串联质谱法[S]. GB/T 20752—2006 Determination of residues of nitrofurans in pork, beef, chicken, pork liver and aquatic products-Liquid chromatography-tandem mass spectrometry(in Chinese).
[24] 吕珍珍, 程泷, 李昌松, 等. UPLC-MS/MS法同时测定不同动物源性食品中硝基呋喃代谢物残留 [J]. 食品工业科技, 2020, 41(12): 245-250,255. doi: 10.13386/j.issn1002-0306.2020.12.040 LV Z Z, CHENG L, LI C S, et al. Simultaneous determination of nitrofuran metabolite residues in different animal derived foods by UPLC-MS/MS [J]. Science and Technology of Food Industry, 2020, 41(12): 245-250,255(in Chinese). doi: 10.13386/j.issn1002-0306.2020.12.040
[25] 丁春燕. 青虾中硝基呋喃代谢物残留的检测研究[D]. 杭州: 浙江工业大学, 2019. DING C Y. Study on the detection of nitrofuran metabolites residues in shrimps[D]. Hangzhou: Zhejiang University of Technology, 2019(in Chinese).