-
人类社会快速发展的同时也带来了严重的环境污染,特别是印染造成的水污染,如何消除这些污染物是行业可持续发展面临的一个关键问题[1]。光催化降解过程是非均相的高级氧化过程,它吸收自然光产生的光能发生催化作用,将周围的氧分子和水分子激发成具有强氧化性的游离阴离子,而不会产生有害的物质[2-3]。然而诸如二氧化钛( TiO2 )锐钛矿型的Eg>3.2eV,只能吸收紫外光,这严重限制了其在催化领域的应用。相对于 TiO2,硫化镉( CdS )则具有较窄的带隙( Eg=2.4 eV ),因此更容易被可见光所激发,常作为可见光催化剂应用于降解水和空气中的污染物[4-5]。然而,CdS 纳米粒子 (CdS-NPs) 相对不稳定,易发生团簇,这将导致其表面积减少,引起光致电子-空穴对复合率的增高,因此阻碍了其光催化的应用。
金属有机骨架(MOFs) 是一类由无机金属中心(金属离子或金属簇)和悬索连接的有机配体构成的多孔晶体材料,在吸附[6]、催化[7]、传感[8]、储气[9]等领域引起了广泛关注。作为 MOFs 的一种,ZIF-8 具有类沸石的高度多孔拓扑结构以及开放的大通道,这使得该材料容易产生较多的活性位点,并且作为传统催化剂的有效替代品也一直受到很大关注[10-11]。值得注意的是,MOFs 的金属中心和有机配体在光催化反应中起着至关重要的作用,在光的照射下,有机配体吸收光子,过量的电子被激发并通过有机配体运输到金属中心,这样金属中心作为电子受体,具有还原性,而有机配体作为电子给体具有氧化性,进而在表面发生氧化还原反应[12-14]。如今,许多半导体/MOF 复合材料已经开发并应用于增强半导体可见光催化[15-16]。目前常见的有半导体在 MOF 上的原位生长[17];MOFs 在半导体上的异质沉积[18];半导体@MOF核壳复合材料的合成等策略[19]。使用 MOFs 作为半导体载体的优越性体现在 MOFs 的高比表面积非常有利于半导体颗粒的分散防止其发生团聚;MOFs 的高比表面积可以产生更多的催化位点,这将大大增强光激发电子-空穴对的分离;MOFs 的多孔性质也可以为光激发电子的迁移提供额外的途径,从而促进电荷载流子的分离[20]。
本次研究通过在 CdS-NPs 上原位异质沉积 ZIF-8 以获得 ZIF-8 包裹的 ZIF-8/CdS 纳米复合材料用来除去亚甲基蓝( MB ),首先利用溶剂热法制备出分散性较好的 CdS-NPs,之后采用原位异质沉积法在 CdS-NPs 表面生成 ZIF-8,并探究 ZIF-8 的引入对 CdS 的光催化性能带来的影响。
ZIF-8/CdS复合材料对亚甲基蓝的光催化降解
Photocatalytic degradation of methylene blue by ZIF-8/CdS composites
-
摘要: 为了改善 CdS 的光腐蚀,提高利用性,通过在 CdS 表面构建 2-甲基咪唑配体,成功的合成了一种可见光驱动的 ZIF-8 包裹CdS 的复合光催化剂。结构和形貌分析表明,通过在 CdS 周围原位沉积 ZIF-8,形成了具有丰富孔隙率和较高比表面积的复合光催化剂。光催化实验结果表明,ZIF-8 的形成不仅可以提高 CdS 的光稳定性,还可以增强对亚甲基蓝 (MB) 吸附能力,同时 ZIF-8 与 CdS 形成的异质结构对 MB 的降解有明显的促进作用,对 15 mg·L−1 的 MB 的去除率为 99%,在3个循环过程中光催化能力几乎没有损失。Abstract: In order to improve the photocorrosion and utilization of CdS, a composite photocatalyst driven by visible light-driven ZIF-8 wrapped in CdS was successfully synthesized by constructing a 2-methylimidazole ligand on the surface of CdS. Structural and morphological analysis show that a composite photocatalyst with abundant porosity and a higher specific surface area has been formed by depositing ZIF-8 in situ around CdS. Photocatalytic experiments show that the formation of ZIF-8 can not only improve the optical stability of CdS, but also enhance its MB absorption capacity. At the same time, the heterogeneous structure formed by ZIF-8 and CdS has a significant effect on the degradation of MB. The removal rate of 15 mg·L−1 MB is 99%, and there is virtually no loss of photocatalysis capacity during the three cycles.
-
Key words:
- CdS /
- ZIF-8 /
- photocatalysis /
- methylene blue
-
图 5 (a) CdS和 ZIF-8/CdS 复合材料在可见光照射下 (λ > 420 nm) 的瞬态光电流响应,(b)不同修饰电极的电化学阻抗谱,(c) 各组分的UV-vis DRS曲线,(d) 各组分的PL强度曲线
Figure 5. (a) Photocurrent responses of CdS and ZIF-8/CdS composite under visible light irradiation (λ > 420 nm), (b) the electrochemical impedance spectra of different-modified electrodes, (c) UV-vis DRS curves for each component, (d) PL strength curves of each component.
图 6 (a) 存在 ZC-40 (50 mg)的 MB 溶液 (15 mg L−1) 的 UV-vis 吸收光谱图,(b) CdS、ZIF-8、ZC-80、和 ZC-40 的降解曲线(所有样品质量:50 mg;MB 溶液浓度:15 mg L−1),(c)MB溶液的pH 环境对ZC-40降解能力的影响,(d) ZC-40在3次循环中的可回收能力
Figure 6. (a) UV-vis absorption spectra of ZC-40 (50 mg) in MB solution (15 mg L−1), (b) Degradation curves of CdS, ZIF-8, ZC-80 and ZC-40 (All samples quality: 50 mg; MB solution concentration: 15 mg L−1), (c)Effect of pH environment of MB solution on ZC-40 degradation ability,(d) The recyclability ability of ZC-40 in three cycles.
-
[1] AKERDI A G, BAHRAMI S H. Application of heterogeneous nano-semiconductors for photocatalytic advanced oxidation of organic compounds: A review [J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103283. doi: 10.1016/j.jece.2019.103283 [2] CHOWDHURY P, ELKAMEL A, RAY A K. Photocatalytic processes for the removal of dye[M]//Green Chemistry for Dyes Removal from Wastewater. Hoboken, NJ, USA: John Wiley & Sons, Inc. , 2015: 119-137. [3] ZHANG T, LIN W B. Metal-organic frameworks for artificial photosynthesis and photocatalysis [J]. Chemical Society Reviews, 2014, 43(16): 5982-5993. doi: 10.1039/C4CS00103F [4] ZHANG N, ZHANG Y H, PAN X Y, et al. Assembly of CdS nanoparticles on the two-dimensional graphene scaffold as visible-light-driven photocatalyst for selective organic transformation under ambient conditions [J]. The Journal of Physical Chemistry C, 2011, 115(47): 23501-23511. doi: 10.1021/jp208661n [5] JANG J S, HAM D J, LAKSHMINARASIMHAN N, et al. Role of platinum-like tungsten carbide as cocatalyst of CdS photocatalyst for hydrogen production under visible light irradiation [J]. Applied Catalysis A:General, 2008, 346(1/2): 149-154. [6] JIANG D N, CHEN M, WANG H, et al. The application of different typological and structural MOFs-based materials for the dyes adsorption [J]. Coordination Chemistry Reviews, 2019, 380: 471-483. doi: 10.1016/j.ccr.2018.11.002 [7] FARRUSSENG D, AGUADO S, PINEL C. Metal-organic frameworks: Opportunities for catalysis [J]. Angewandte Chemie International Edition, 2009, 48(41): 7502-7513. doi: 10.1002/anie.200806063 [8] DOLGOPOLOVA E A, RICE A M, MARTIN C R, et al. Photochemistry and photophysics of MOFs: Steps towards MOF-based sensing enhancements [J]. Chemical Society Reviews, 2018, 47(13): 4710-4728. doi: 10.1039/C7CS00861A [9] LI H, WANG K C, SUN Y J, et al. Recent advances in gas storage and separation using metal-organic frameworks [J]. Materials Today, 2018, 21(2): 108-121. doi: 10.1016/j.mattod.2017.07.006 [10] DHAKSHINAMOORTHY A, ALVARO M, GARCIA H. Commercial metal–organic frameworks as heterogeneous catalysts [J]. Chemical Communications, 2012, 48(92): 11275. doi: 10.1039/c2cc34329k [11] FANG Z L, BUEKEN B, DE VOS D E, et al. Defect-engineered metal-organic frameworks [J]. Angewandte Chemie International Edition, 2015, 54(25): 7234-7254. doi: 10.1002/anie.201411540 [12] DHAKSHINAMOORTHY A, ASIRI A M, GARCÍA H. Metal-organic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production [J]. Angewandte Chemie (International Ed. in English), 2016, 55(18): 5414-5445. doi: 10.1002/anie.201505581 [13] DHAKSHINAMOORTHY A, LI Z H, GARCIA H. Catalysis and photocatalysis by metal organic frameworks [J]. Chemical Society Reviews, 2018, 47(22): 8134-8172. doi: 10.1039/C8CS00256H [14] WEN M C, MORI K, KUWAHARA Y, et al. Design and architecture of metal organic frameworks for visible light enhanced hydrogen production [J]. Applied Catalysis B:Environmental, 2017, 218: 555-569. doi: 10.1016/j.apcatb.2017.06.082 [15] JIANG H L, LIU B, AKITA T, et al. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal–organic framework [J]. Journal of the American Chemical Society, 2009, 131(32): 11302-11303. doi: 10.1021/ja9047653 [16] XIONG W P, ZENG Z T, LI X, et al. Multi-walled carbon nanotube/amino-functionalized MIL-53(Fe) composites: Remarkable adsorptive removal of antibiotics from aqueous solutions [J]. Chemosphere, 2018, 210: 1061-1069. doi: 10.1016/j.chemosphere.2018.07.084 [17] XU H Q, YANG S Z, MA X, et al. Unveiling charge-separation dynamics in CdS/metal–organic framework composites for enhanced photocatalysis [J]. ACS Catalysis, 2018, 8(12): 11615-11621. doi: 10.1021/acscatal.8b03233 [18] LIU Y, DENG L, SHENG J P, et al. Photostable core-shell CdS/ZIF-8 composite for enhanced photocatalytic reduction of CO2 [J]. Applied Surface Science, 2019, 498: 143899. doi: 10.1016/j.apsusc.2019.143899 [19] SAHA S, DAS G, THOTE J, et al. Photocatalytic metal–organic framework from CdS quantum dot incubated luminescent metallohydrogel [J]. Journal of the American Chemical Society, 2014, 136(42): 14845-14851. doi: 10.1021/ja509019k [20] DHAKSHINAMOORTHY A, GARCIA H. Catalysis by metal nanoparticles embedded on metal-organic frameworks [J]. Chemical Society Reviews, 2012, 41(15): 5262-5284. doi: 10.1039/c2cs35047e [21] ZENG M, CHAI Z G, DENG X, et al. Core-shell CdS@ZIF-8 structures for improved selectivity in photocatalytic H2 generation from formic acid [J]. Nano Research, 2016, 9(9): 2729-2734. doi: 10.1007/s12274-016-1161-3 [22] TIAN F Y, ZHANG H L, LIU S, et al. Visible-light-driven CO2 reduction to ethylene on CdS: Enabled by structural relaxation-induced intermediate dimerization and enhanced by ZIF-8 coating [J]. Applied Catalysis B:Environmental, 2021, 285: 119834. doi: 10.1016/j.apcatb.2020.119834 [23] QIU J H, ZHANG X F, ZHANG X G, et al. Constructing Cd0.5Zn0.5S@ZIF-8 nanocomposites through self-assembly strategy to enhance Cr(VI) photocatalytic reduction [J]. Journal of Hazardous Materials, 2018, 349: 234-241. doi: 10.1016/j.jhazmat.2018.02.009 [24] ZHANG H F, ZHAO M, YANG Y, et al. Hydrolysis and condensation of ZIF-8 in water [J]. Microporous and Mesoporous Materials, 2019, 288: 109568. doi: 10.1016/j.micromeso.2019.109568 [25] MORAIS P C, QU F Y. The quantum mechanical description of the dot-dot interaction in ionic colloids [J]. Journal of Alloys and Compounds, 2007, 434/435: 565-568. doi: 10.1016/j.jallcom.2006.08.184