-
塑料是从化石燃料中提取出来,然后将其通过聚合反应加聚或者缩聚而成的高分子化合物[1]。常见的塑料有聚乙烯(PE)、聚酰胺(PA)、聚苯乙烯(PS)、聚氯乙烯(PVC)以及聚酯类(PET)等[2]。由于其质地轻薄,价格低廉,方便耐用以及易于加工等优点,已被广泛应用于农业、工业、医学以及市政等各个领域[3]。研究显示,在2018年,全球塑料的生产量达到了3.4×109 t[1]。我国是塑料生产大国,目前每年生产的塑料制品为7.52×107 t,其中12%的塑料垃圾被焚烧,79%的以各种形式进入到环境中,回收率不足10%[3-4],且由于塑料性质稳定不易被降解,故对生态环境造成了严重的污染问题。
进入环境中的塑料在长期的紫外线照射、物理磨损、水流、风力以及氧气等作用下会发生老化裂解,破碎为尺寸更小的塑料,从而增大其比表面积和吸附点位[5-6]。2004年,Richard等[7]在海洋水体和底泥沉积物中发现了塑料碎片,并首次将微塑料(MPs)这一概念提出,它主要是指粒径小于5 mm的塑料微粒。后来学者们不断从环境中检出了纤维状、颗粒状、薄膜状和发泡类等不同形貌类型的MPs[8]。MPs根据来源可分为初生MPs和次生MPs,初生MPs是指在生产过程中被制成的毫米、微米和纳米级的MPs,被大量应用于工业原料和洗面奶、沐浴露、磨砂膏、洗发水、牙膏以及足浴盐等日常洗护用品中[9-10]。次生MPs是指由大块塑料垃圾如生活垃圾、塑料薄膜等经过物理磨损、化学侵蚀、紫外线照射和生物降解等外部作用逐渐分解形成的塑料微粒[11]。目前,MPs在自然水体、瓶装水、沉积物、土壤、大气、生物体甚至人体中都有不同程度的检出[12],近期纽约大学的一项研究发现,婴儿粪便中的MPs含量是成年人的20倍,人类时刻都暴露在塑料环境中,对人体存在巨大的潜在危害。且MPs由于自身的粒径小、比表面积大和疏水性强等特点,其表面容易吸附周围环境中的污染物和病原体,如有机污染物、重金属和抗生素等。
目前,关于MPs在环境中的行为和归趋的文献调查显示,大多数研究集中于海洋(71%)、海滩和水底淤泥(24%)中[13]。土壤由于其性质复杂以及其中的MPs分离检测较为困难等原因[14],使得土壤中MPs的相关研究较为缓慢。有研究表明,海洋中80%的MPs来自于陆地环境,陆地环境中的MPs丰度可能是海洋中的4—23倍[15]。土壤中MPs的来源主要包括农用塑料薄膜的广泛使用、农业灌溉用水、污泥堆肥及施用、垃圾填埋以及大气沉降等[16]。MPs还会对土壤环境造成一定的生态毒理效应,如影响土壤的理化性质、生态功能、动植物和微生物多样性等[14]。另外,MPs对土壤生态环境的影响不仅是由其自身的颗粒效应和所含添加剂引起的,其表面吸附的污染物也大大增加了对生物的毒害作用。目前有关MPs的生态毒理效应是一个研究热点,MPs对生物影响的作用机理尚不清楚。
本文评述了土壤中MPs的来源,重点阐述了土壤环境中MPs对土壤生物的生态毒理效应。最后,对其未来研究方向进行了展望,试图为今后土壤中MPs的研究提供一定的参考价值。
土壤中微塑料的来源与其生态毒理效应研究进展
Research progress on sources and ecotoxicological effects of microplastics in soil
-
摘要: 微塑料作为一种新兴的污染物,近年来由于其对环境的污染逐渐加剧而受到了学者的广泛关注。当前对微塑料的研究多集中于水环境中,而对土壤环境中微塑料的研究相对较少,由于其难以降解,会长期存在于土壤环境中,进而对土壤理化性质和物质循环、动植物以及微生物等造成严重的毒理效应。本文评述了土壤中微塑料的来源与其生态毒理效应,土壤中微塑料的来源主要有农用塑料薄膜的广泛使用、农业灌溉用水、污泥堆肥及施用、垃圾填埋和大气沉降。进而阐述了微塑料由于自身的颗粒效应、所含添加剂以及吸附土壤中其它污染物产生的复合污染,对土壤生态环境造成显著的毒理效应。微塑料进入土壤环境后会影响土壤的理化性质和物质循环,使土壤结构发生改变、土壤透气性和酶活性降低。还会影响土壤动植物生长发育以及微生物群落结构,使土壤动物产生肠道损伤、免疫反应、神经毒性、繁殖率降低,死亡率增加以及肠道内微生物群落结构改变等;影响植物种子发芽率、含水量、生殖过程、光合色素、酶活性以及植物生物量和外在特征等;改变微生物原有的群落结构,抑制微生物活性、降低微生物多样性,并使其繁殖发育受到影响。最后,在总结了国内外对微塑料生态毒理效应研究的基础上,对今后的研究重点进行了展望。Abstract: As emerging pollutants, microplastics have attracted extensive attention of scholars in recent years because of their increasing environmental pollution. At present, the researches on microplastics mostly focus on the water environment, while the researches on microplastics in the soil environment are relatively few. Because they are difficult to be degraded, they will exist in the soil environment for a long time, and then cause serious toxicological effects on animals, plants and microorganisms. This paper reviews the sources and ecotoxicological effects of microplastics in soil, The sources of microplastics in soil mainly include the wide use of agricultural plastic film, agricultural irrigation, sludge composting and application, landfill and atmospheric sedimentation. Furthermore, it is expounded that microplastics have significant toxicological effects on soil ecological environment due to their particle effect, additives and compound pollution caused by adsorption of other pollutants in soil. After entering the soil environment, microplastics will firstly affect the physical and chemical properties and material cycle of the soil, change the soil structure, reduce the soil permeability and enzyme activity. Then they will also affect the growth and development of soil animals and plants and the structure of microbial community, resulting in intestinal injury, immune response, neurotoxicity, reduction of reproduction rate, increase of mortality and change of microbial community structure in the intestinal tract; They will affect the germination rate, water content, reproductive process, photosynthetic pigment, enzyme activity, plant biomass and external characteristics of plant seeds; They also can change the original community structure of microorganisms, inhibit microbial activity, reduce microbial diversity, and affect their reproduction and development. Finally, on the basis of summarizing the researches on the ecotoxicological effects of microplastics at home and abroad, the future research focuses are prospected.
-
Key words:
- soil /
- microplastics /
- source /
- ecotoxicological effect.
-
表 1 塑料中常用的添加剂种类、代表性化合物、作用及其生物毒性
Table 1. Types, representative compounds, functions and biological toxicity of additives commonly used in plastics
添加剂种类
Types of
additives代表性化合物
Representative
compounds塑料类型
Plastic
type作用
Function生物毒性
Biological toxicity增塑剂 邻苯二甲酸酯 PVC 提高塑料抗冲击性、改善柔韧性、拉伸性和耐久性,降低聚合物分子链结晶度[39] 致癌致畸致突变,内分泌干扰物,抑制土壤微生物活性[40-42] 阻燃剂 六溴环十二烷、多溴二苯醚、四溴双酚A[43] PS、PP 可以增加高分子聚合物的耐燃性 神经毒性、发育毒性、遗传毒性以及内分泌干扰物[44-45] 抗氧化剂 双酚A、壬基酚 PE、PP 延迟或者抑制塑料因辐射、光、热等发生的氧化降解,增加使用寿命[46] 影响发育且诱发畸变、内分泌干扰物[47] 表 2 MPs对土壤理化性质和物质循环的影响
Table 2. Effects of MPs on soil physical and chemical properties and material cycle
MPs 对土壤环境的影响
Effects on soil environment参考文献
Reference类型
Types粒径/μm
Particle size浓度
ConcentrationPP、PA、PE、PET 8—20 0.05%—2% MPs使土壤容重显著减低,且对土壤的持水能力也产生了影响 [52] PE 100 28% 添加MPs后,使土壤中的pH、阳离子交换量以及可溶性有机物含量均降低 [53] PP <180 7% 对可溶性有机物、富里酸等腐殖类物质的影响较小 [54] 28% 显著增加了可溶性有机氮、有机碳、有机磷以及PO43-浓度、NO3-浓度、腐殖质和富里酸的量 PE 2000 1% 对土壤水分的蒸发和干燥过程产生影响,使其蒸发速率提高了25.9%—30.20%,因而加速了土壤水分的蒸发,造成水分短缺 [55] PE残膜 — — 破坏土壤团聚体结构,形成阻隔层,使土壤通气性和透水性降低、团聚体量减少 [56-57] 表 3 MPs对土壤动物的生态毒理效应
Table 3. Ecotoxicological effects of MPs on soil animals
土壤动物
Soil animalMPs 生态毒理效应
Ecotoxicological effects参考文献
Reference类型
Type粒径/μm
Particle size浓度
Concentration蚯蚓 PE 250—1000 125 mg·kg−1 造成明显的肠道损伤、炎症以及不同程度的免疫反应 [60] 蚯蚓 PE — 60% 生长率出现负值,死亡率最高 [18] 蚯蚓 PS 0.05—0.1 0.5% 肠道内微生物多样性增加 [61] 10% 肠道内微生物多样性下降、群落结构被改变 线虫 PS 5.0 (0.001—
10) mg·L−1造成肠道损伤,降低线虫肠道中钙水平、成活率、体长以及繁殖能力 [62] 秀丽线虫 PS 0.1—5.0 1 mg·L−1 使得与线虫运动相关的神经元和乙酰胆碱能发生退变和损伤,出现无法收缩能异常行为 [63] 跳虫 PVC 80—250 1 g·kg−1 破坏肠道中微生物群落破坏、增加微生物多样性 [64] 跳虫 PS 44 8 mg·kg−1 能够进入跳虫体内 [65] 29 可以在跳虫体内迁移 0.5 固定在跳虫尾巴处,阻碍其运动 弹尾虫 PVC 80—250 0.54%—4.6% 使肠道微生物群落及多样性改变 [66] 非洲大蜗牛 PET <5000 0.71 g·kg−1 减少摄食量和排泄量,引起氧化应激反应,且对胃肠壁绒毛产生损伤 [67] 等足类 PE 183±93 4 g·kg−1(投食) 对其摄食率、排泄率和存活率等没有明显的影响 [68] 小鼠 PE 10—150 0.2 g·kg−1 影响肠道微生物组成和多样性,引起小肠炎症反应 [69] 小鼠 PS 5 1000 μg·L−1 减少肠道黏液分泌,损害其屏障功能,并诱导小鼠肠道的微生物区系失调、代谢以及肝脏脂质的紊乱 [70-71] 0.5、50 小鼠 PS 5.0—5.9 0.1 mg·d−1、
1 mg·d−1(注射)导致精子的数量和活性显著下降、畸形率提高以及和精子代谢相关的酶活性下降 [72] 表 4 MPs对植物的生态毒理效应
Table 4. Ecotoxicological effects of MPs on plants
植物
PlantsMPs 实验条件
Experimental condition生态毒理效应
Ecotoxicological effects参考文献
Reference类型
Type粒径/μm Particle size 浓度
Concentration小麦 LDPE 50—1000 1% 土培 抑制小麦种子的发芽率和幼苗生长,使生殖期受到负面影响。 [80] 绿豆 PE 23—38 100 g·kg−1 土培 降低了绿豆幼苗的含水率、鲜重、干重、根长以及芽长等,抑制了绿豆幼苗的生长。 [81] 大豆 PVC 15 (1.62—2.70) g·kg−1 土培 显著抑制了大豆幼苗的株高、叶面积以及大豆根鲜重。 [82] 大葱 PE/PS/PP/PET <1000 2% 土培 使洋葱叶片性状、总生物量、元素组成和根际性状发生变化。 [83] 生菜 PS 0.2 10 mg·mL−1 水培 被生菜吸收和积累,并在根压与蒸腾拉力的作用下将其运输到可供食用的茎叶之中。 [84] 小麦/生菜 PS 0.2、2.0 (0.5—50) mg·L−1 水培 通过小麦和生菜侧根上的裂隙进入植物体内,并随着蒸腾作用从根部转移到地上部。 [78] 蚕豆 PS 0.1 100 mg·L−1 水培 可以被蚕豆根部吸收和积累,从而干扰营养物质的运输,对蚕豆产生毒性。 [85] 5000 (10—100) mg·L−1 使蚕豆的过氧化氢酶活性降低,超氧化物酶和过氧化物酶活性升高,且表现出氧化应激反应,纳米级的MPs表现出更强的遗传毒性和氧化损伤。 水稻 PS/PTFE 10 (0.04—0.2) g·L−1 水培 破坏水稻组织和细胞膜、诱导脂质过氧化、抑制根际活性、降低净光合速率并使其叶绿素a和叶绿素荧光的含量显著降低,从而降低水稻的生物量 [86] -
[1] 陈彪, 汪羚, 李达, 等. 水环境中的微塑料及其生态效应 [J]. 生态毒理学报, 2019, 14(1): 30-40. doi: 10.7524/AJE.1673-5897.20180610001 CHEN B, WANG L, LI D, et al. Microplastics in water environment and their ecological effects [J]. Asian Journal of Ecotoxicology, 2019, 14(1): 30-40(in Chinese). doi: 10.7524/AJE.1673-5897.20180610001
[2] WANG W F, GE J, YU X Y, et al. Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective [J]. Science of the Total Environment, 2020, 708: 134841. doi: 10.1016/j.scitotenv.2019.134841 [3] 侯军华, 檀文炳, 余红, 等. 土壤环境中微塑料的污染现状及其影响研究进展 [J]. 环境工程, 2020, 38(2): 16-27,15. doi: 10.13205/j.hjgc.202002002 HOU J H, TAN W B, YU H, et al. Microplastics in soil ecosystem: A review on sources, fate and ecological impact [J]. Environmental Engineering, 2020, 38(2): 16-27,15(in Chinese). doi: 10.13205/j.hjgc.202002002
[4] JAMBECK J R, GEYER R, WILCOX C, et al. Marine pollution. Plastic waste inputs from land into the ocean [J]. Science, 2015, 347(6223): 768-771. doi: 10.1126/science.1260352 [5] SONG Y K, HONG S H, JANG M, et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type [J]. Environmental Science & Technology, 2017, 51(8): 4368-4376. [6] HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities [J]. Science of the Total Environment, 2017, 586: 127-141. doi: 10.1016/j.scitotenv.2017.01.190 [7] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic? [J]. Science, 2004, 304(5672): 838. doi: 10.1126/science.1094559 [8] 李昇昇, 李良忠, 李敏, 等. 环境样品中微塑料及其结合污染物鉴别分析研究进展 [J]. 环境化学, 2020, 39(4): 960-974. doi: 10.7524/j.issn.0254-6108.2019102304 LI S S, LI L Z, LI M, et al. Study on identification of microplastics and the combined pollutants in environmental samples [J]. Environmental Chemistry, 2020, 39(4): 960-974(in Chinese). doi: 10.7524/j.issn.0254-6108.2019102304
[9] 刘锋平, 董晓杰, 董兵, 等. 化妆品及个人护理用品中塑料微珠的环境行为及生态毒性研究进展 [J]. 环境与健康杂志, 2016, 33(12): 1114-1116. doi: 10.16241/j.cnki.1001-5914.2016.12.023 LIU F P, DONG X J, DONG B, et al. Environmental behavior and ecotoxicity of microbead in cosmetic and personal care products: A review of recent studies [J]. Journal of Environment and Health, 2016, 33(12): 1114-1116(in Chinese). doi: 10.16241/j.cnki.1001-5914.2016.12.023
[10] 段以隽, 谷翔宇, 陈闻帆, 等. 个人护理品中的微塑料研究 [J]. 环境与发展, 2019, 31(3): 236,238. doi: 10.16647/j.cnki.cn15-1369/X.2019.03.137 DUAN Y J, GU X Y, CHEN W F, et al. Microplastics in personal care products [J]. Environment and Development, 2019, 31(3): 236,238(in Chinese). doi: 10.16647/j.cnki.cn15-1369/X.2019.03.137
[11] 郝爱红, 赵保卫, 张建, 等. 土壤中微塑料污染现状及其生态风险研究进展 [J]. 环境化学, 2021, 40(4): 1100-1111. doi: 10.7524/j.issn.0254-6108.2020083102 HAO A H, ZHAO B W, ZHANG J, et al. Research progress on pollution status and ecological risk of microplastics in soil [J]. Environmental Chemistry, 2021, 40(4): 1100-1111(in Chinese). doi: 10.7524/j.issn.0254-6108.2020083102
[12] 廖苑辰, 娜孜依古丽·加合甫别克, 李梅, 等. 微塑料对小麦生长及生理生化特性的影响 [J]. 环境科学, 2019, 40(10): 4661-4667. doi: 10.13227/j.hjkx.201903113 LIAO Y C, NAZYGUL·JAHITBEK, LI M et al. Effects of microplastics on the growth, physiology, and biochemical characteristics of wheat(Triticum aestivum) [J]. Environmental Science, 2019, 40(10): 4661-4667(in Chinese). doi: 10.13227/j.hjkx.201903113
[13] DING W L, LI Z, QI R M, et al. Effect thresholds for the earthworm Eisenia fetida: Toxicity comparison between conventional and biodegradable microplastics [J]. Science of the Total Environment, 2021, 781: 146884. doi: 10.1016/j.scitotenv.2021.146884 [14] RILLIG M C. Microplastic in terrestrial ecosystems and the soil? [J]. Environmental Science & Technology, 2012, 46(12): 6453-6454. [15] NIZZETTO L, FUTTER M, LANGAAS S. Are agricultural soils dumps for microplastics of urban origin? [J]. Environmental Science & Technology, 2016, 50(20): 10777-10779. [16] HUERTA LWANGA E, GERTSEN H, GOOREN H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris [J]. Environmental Pollution, 2017, 220: 523-531. doi: 10.1016/j.envpol.2016.09.096 [17] MCGECHAN M B. SW—soil and water: Transport of particulate and colloid-sorbed contaminants through soil, part 2: Trapping processes and soil pore geometry [J]. Biosystems Engineering, 2002, 83(4): 387-395. doi: 10.1006/bioe.2002.0136 [18] STEINMETZ Z, WOLLMANN C, SCHAEFER M, et al. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? [J]. Science of the Total Environment, 2016, 550: 690-705. doi: 10.1016/j.scitotenv.2016.01.153 [19] 马兆嵘, 刘有胜, 张芊芊, 等. 农用塑料薄膜使用现状与环境污染分析 [J]. 生态毒理学报, 2020, 15(4): 21-32. MA Z R, LIU Y S, ZHANG Q Q, et al. The usage and environmental pollution of agricultural plastic film [J]. Asian Journal of Ecotoxicology, 2020, 15(4): 21-32(in Chinese).
[20] LI R J, LIU Y, SHENG Y F, et al. Effect of prothioconazole on the degradation of microplastics derived from mulching plastic film: Apparent change and interaction with heavy metals in soil [J]. Environmental Pollution, 2020, 260: 113988. doi: 10.1016/j.envpol.2020.113988 [21] 胡灿, 王旭峰, 陈学庚, 等. 新疆农田残膜污染现状及防控策略 [J]. 农业工程学报, 2019, 35(24): 223-234. doi: 10.11975/j.issn.1002-6819.2019.24.027 HU C, WANG X F, CHEN X G, et al. Current situation and control strategies of residual film pollution in Xinjiang [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24): 223-234(in Chinese). doi: 10.11975/j.issn.1002-6819.2019.24.027
[22] 赵岩, 陈学庚, 温浩军, 等. 农田残膜污染治理技术研究现状与展望 [J]. 农业机械学报, 2017, 48(6): 1-14. doi: 10.6041/j.issn.1000-1298.2017.06.001 ZHAO Y, CHEN X G, WEN H J, et al. Research status and prospect of control technology for residual plastic film pollution in farmland [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(6): 1-14(in Chinese). doi: 10.6041/j.issn.1000-1298.2017.06.001
[23] GAO H H, YAN C R, LIU Q, et al. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis [J]. Science of the Total Environment, 2019, 651: 484-492. doi: 10.1016/j.scitotenv.2018.09.105 [24] 杨扬, 何文清. 农田土壤微塑料污染现状与进展 [J]. 环境工程, 2021, 39(5): 156-164,15. doi: 10.13205/j.hjgc.202105022 YANG Y, HE W Q. Research status and progress of microplastic pollution in farmland soil [J]. Environmental Engineering, 2021, 39(5): 156-164,15(in Chinese). doi: 10.13205/j.hjgc.202105022
[25] MATEO-SAGASTA J, MEDLICOTT K, QADIR M, et al. Proceedings of the UN-water project on the safe use of wastewater in agriculture [J]. American Heart Journal, 2013, 161(6): 1114-1124. [26] MAJEWSKY M, BITTER H, EICHE E, et al. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC) [J]. Science of the Total Environment, 2016, 568: 507-511. doi: 10.1016/j.scitotenv.2016.06.017 [27] 白濛雨, 赵世烨, 彭谷雨, 等. 城市污水处理过程中微塑料赋存特征 [J]. 中国环境科学, 2018, 38(5): 1734-1743. doi: 10.3969/j.issn.1000-6923.2018.05.016 BAI M Y, ZHAO S Y, PENG G Y, et al. Occurrence, characteristics of microplastic during urban sewage treatment process [J]. China Environmental Science, 2018, 38(5): 1734-1743(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.05.016
[28] MASON S A, GARNEAU D, SUTTON R, et al. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent [J]. Environmental Pollution, 2016, 218: 1045-1054. doi: 10.1016/j.envpol.2016.08.056 [29] 徐湘博, 孙明星, 张林秀, 等. 土壤微塑料污染研究进展与展望 [J]. 农业资源与环境学报, 2021, 38(1): 1-9. doi: 10.13254/j.jare.2020.0024 XU X B, SUN M X, ZHANG L X, et al. Research progress and prospect of soil microplastic pollution [J]. Journal of Agricultural Resources and Environment, 2021, 38(1): 1-9(in Chinese). doi: 10.13254/j.jare.2020.0024
[30] MINTENIG S M, LÖDER M G J, PRIMPKE S, et al. Low numbers of microplastics detected in drinking water from ground water sources [J]. Science of the Total Environment, 2019, 648: 631-635. doi: 10.1016/j.scitotenv.2018.08.178 [31] MAHON A M, O'CONNELL B, HEALY M G, et al. Microplastics in sewage sludge: Effects of treatment [J]. Environmental Science & Technology, 2017, 51(2): 810-818. [32] HÄMER J, GUTOW L, KÖHLER A, et al. Fate of microplastics in the marine isopod Idotea emarginata [J]. Environmental Science & Technology, 2014, 48(22): 13451-13458. [33] ZUBRIS K A V, RICHARDS B K. Synthetic fibers as an indicator of land application of sludge [J]. Environmental Pollution, 2005, 138(2): 201-211. doi: 10.1016/j.envpol.2005.04.013 [34] GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made [J]. Science Advances, 2017, 3(7): e1700782. doi: 10.1126/sciadv.1700782 [35] 刘沙沙, 付建平, 郭楚玲, 等. 微塑料的环境行为及其生态毒性研究进展 [J]. 农业环境科学学报, 2019, 38(5): 957-969. LIU S S, FU J P, GUO C L, et al. Research progress on environmental behavior and ecological toxicity of microplastics [J]. Journal of Agro-Environment Science, 2019, 38(5): 957-969(in Chinese).
[36] DRIS R, GASPERI J, ROCHER V, et al. Microplastic contamination in an urban area: A case study in Greater Paris [J]. Environmental Chemistry, 2015, 12(5): 592. doi: 10.1071/EN14167 [37] 周倩, 田崇国, 骆永明. 滨海城市大气环境中发现多种微塑料及其沉降通量差异 [J]. 科学通报, 2017, 62(33): 3902-3909. doi: 10.1360/N972017-00956 ZHOU Q, TIAN C G, LUO Y M. Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere [J]. Chinese Science Bulletin, 2017, 62(33): 3902-3909(in Chinese). doi: 10.1360/N972017-00956
[38] 陈蕾, 高山雪, 徐一卢. 塑料添加剂向生态环境中的释放与迁移研究进展 [J]. 生态学报, 2021, 41(8): 3315-3324. CHEN L, GAO S X, XU Y L. Progress on release and migration of plastic additives to ecological environment [J]. Acta Ecologica Sinica, 2021, 41(8): 3315-3324(in Chinese).
[39] 高静, 李红玉, 马瑾玮, 等. 国内外增塑剂的研究与发展趋势 [J]. 化工技术与开发, 2019, 48(12): 49-52,57. GAO J, LI H Y, MA J W, et al. Research and development trend of plasticizers in China and abroad [J]. Technology & Development of Chemical Industry, 2019, 48(12): 49-52,57(in Chinese).
[40] ERKEKOGLU P, KOCER-GUMUSEL B. Genotoxicity of phthalates [J]. Toxicology Mechanisms and Methods, 2014, 24(9): 616-626. doi: 10.3109/15376516.2014.960987 [41] WANG J, LV S, ZHANG M Y, et al. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils [J]. Chemosphere, 2016, 151: 171-177. doi: 10.1016/j.chemosphere.2016.02.076 [42] SUN J Q, WU X Q, GAN J. Uptake and metabolism of phthalate esters by edible plants [J]. Environmental Science & Technology, 2015, 49(14): 8471-8478. [43] 李玉芳, 伍小明. 阻燃剂在聚丙烯阻燃中的应用研究进展 [J]. 塑料助剂, 2019(3): 6-9,37. doi: 10.3969/j.issn.1672-6294.2019.03.0002 LI Y F, WU X M. Application research development of flame retardants in the polypropylene-flame retardant system [J]. Plastics Additives, 2019(3): 6-9,37(in Chinese). doi: 10.3969/j.issn.1672-6294.2019.03.0002
[44] 葛渊数. 卤代阻燃剂环境毒理效应和机理研究进展[J]. 环境保护前沿, 2018, 8(6): 457-465. GE Y S, Research progress on environmental toxicological effects and mechanism of halogenated flame retardants[J]. Frontier of Environmental Protection, 2018, 8(6): 457-465(in Chinese).
[45] 李斐, 王晓晴, 刘佳琳, 等. 溴系阻燃剂毒理效应的计算模拟预测与环境风险评估进展 [J]. 生态毒理学报, 2019, 14(4): 2-13. LI F, WANG X Q, LIU J L, et al. Advances in computational simulation and environmental risk assessment on the toxicological effects of brominated flame retardants [J]. Asian Journal of Ecotoxicology, 2019, 14(4): 2-13(in Chinese).
[46] 陆园, 战力英, 宫青海, 等. 抗氧剂的分类、作用机理及研究进展 [J]. 塑料助剂, 2016(2): 43-50. doi: 10.3969/j.issn.1672-6294.2016.02.012 LU Y, ZHAN L Y, GONG Q H, et al. Classification, mechanism of action and research progress of antioxidant [J]. Plastics Additives, 2016(2): 43-50(in Chinese). doi: 10.3969/j.issn.1672-6294.2016.02.012
[47] WANG W F, NDUNGU A W, LI Z, et al. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China [J]. Science of the Total Environment, 2017, 575: 1369-1374. doi: 10.1016/j.scitotenv.2016.09.213 [48] HARTMANN N B, RIST S, BODIN J, et al. Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota [J]. Integrated Environmental Assessment and Management, 2017, 13(3): 488-493. doi: 10.1002/ieam.1904 [49] TEUTEN E L, ROWLAND S J, GALLOWAY T S, et al. Potential for plastics to transport hydrophobic contaminants [J]. Environmental Science & Technology, 2007, 41(22): 7759-7764. [50] LAGANÀ P, CARUSO G, CORSI I, et al. Do plastics serve as a possible vector for the spread of antibiotic resistance?First insights from bacteria associated to a polystyrene piece from King George Island (Antarctica) [J]. International Journal of Hygiene and Environmental Health, 2019, 222(1): 89-100. doi: 10.1016/j.ijheh.2018.08.009 [51] de SOUZA MACHADO A A, KLOAS W, ZARFL C, et al. Microplastics as an emerging threat to terrestrial ecosystems [J]. Global Change Biology, 2018, 24(4): 1405-1416. doi: 10.1111/gcb.14020 [52] de SOUZA MACHADO A A, LAU C W, TILL J, et al. Impacts of microplastics on the soil biophysical environment [J]. Environmental Science & Technology, 2018, 52(17): 9656-9665. [53] YU H, FAN P, HOU J H, et al. Inhibitory effect of microplastics on soil extracellular enzymatic activities by changing soil properties and direct adsorption: An investigation at the aggregate-fraction level [J]. Environmental Pollution, 2020, 267: 115544. doi: 10.1016/j.envpol.2020.115544 [54] LIU H F, YANG X M, LIU G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil [J]. Chemosphere, 2017, 185: 907-917. doi: 10.1016/j.chemosphere.2017.07.064 [55] WAN Y, WU C X, XUE Q, et al. Effects of plastic contamination on water evaporation and desiccation cracking in soil [J]. Science of the Total Environment, 2019, 654: 576-582. doi: 10.1016/j.scitotenv.2018.11.123 [56] ZHANG M M, DONG B D, QIAO Y Z, et al. Effects of sub-soil plastic film mulch on soil water and salt content and water utilization by winter wheat under different soil salinities [J]. Field Crops Research, 2018, 225: 130-140. doi: 10.1016/j.fcr.2018.06.010 [57] JIANG X J, LIU W J, WANG E H, et al. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China [J]. Soil and Tillage Research, 2017, 166: 100-107. doi: 10.1016/j.still.2016.10.011 [58] 任欣伟, 唐景春, 于宸, 等. 土壤微塑料污染及生态效应研究进展 [J]. 农业环境科学学报, 2018, 37(6): 1045-1058. doi: 10.11654/jaes.2017-1409 REN X W, TANG J C, YU C, et al. Advances in research on the ecological effects of microplastic pollution on soil ecosystems [J]. Journal of Agro-Environment Science, 2018, 37(6): 1045-1058(in Chinese). doi: 10.11654/jaes.2017-1409
[59] HUERTA LWANGA E, MENDOZA VEGA J, KU QUEJ V, et al. Field evidence for transfer of plastic debris along a terrestrial food chain [J]. Scientific Reports, 2017, 7: 14071. doi: 10.1038/s41598-017-14588-2 [60] RODRIGUEZ-SEIJO A, LOURENÇO J, ROCHA-SANTOS T A P, et al. Histopathological and molecular effects of microplastics in Eisenia andrei Bouché [J]. Environmental Pollution, 2017, 220: 495-503. doi: 10.1016/j.envpol.2016.09.092 [61] ZHU B K, FANG Y M, ZHU D, et al. Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus [J]. Environmental Pollution, 2018, 239: 408-415. doi: 10.1016/j.envpol.2018.04.017 [62] LEI L L, WU S Y, LU S B, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2018, 619/620: 1-8. doi: 10.1016/j.scitotenv.2017.11.103 [63] 雷丽丽. 微塑料颗粒对秀丽线虫和斑马鱼的毒性效应及其机制[D]. 上海: 华东师范大学, 2019. LEI L L. Toxic effects and mechanisms of microplastic particles on Caenorhabditis elegans and Danio rerio[D]. Shanghai: East China Normal University, 2019(in Chinese).
[64] ZHU D, CHEN Q L, AN X L, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition [J]. Soil Biology and Biochemistry, 2018, 116: 302-310. doi: 10.1016/j.soilbio.2017.10.027 [65] KIM S W, AN Y J. Soil microplastics inhibit the movement of springtail species [J]. Environment International, 2019, 126: 699-706. doi: 10.1016/j.envint.2019.02.067 [66] ZHU D, BI Q F, XIANG Q, et al. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida [J]. Environmental Pollution, 2018, 235: 150-154. doi: 10.1016/j.envpol.2017.12.058 [67] SONG Y, CAO C J, QIU R, et al. Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure [J]. Environmental Pollution, 2019, 250: 447-455. doi: 10.1016/j.envpol.2019.04.066 [68] JEMEC KOKALJ A, HORVAT P, SKALAR T, et al. Plastic bag and facial cleanser derived microplastic do not affect feeding behaviour and energy reserves of terrestrial isopods [J]. Science of the Total Environment, 2018, 615: 761-766. doi: 10.1016/j.scitotenv.2017.10.020 [69] LI B Q, DING Y F, CHENG X, et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice [J]. Chemosphere, 2020, 244: 125492. doi: 10.1016/j.chemosphere.2019.125492 [70] JIN Y X, LU L, TU W Q, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice [J]. Science of the Total Environment, 2019, 649: 308-317. doi: 10.1016/j.scitotenv.2018.08.353 [71] LU L, WAN Z Q, LUO T, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice [J]. Science of the Total Environment, 2018, 631/632: 449-458. doi: 10.1016/j.scitotenv.2018.03.051 [72] XIE X M, DENG T, DUAN J F, et al. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway [J]. Ecotoxicology and Environmental Safety, 2020, 190: 110133. doi: 10.1016/j.ecoenv.2019.110133 [73] BESSELING E, WEGNER A, FOEKEMA E M, et al. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L. ) [J]. Environmental Science & Technology, 2013, 47(1): 593-600. [74] 马旖旎, 黄安娜, 姜湘韬, 等. 微塑料对菲在生物体内富集的影响及其联合毒性[C]//第十次全国分析毒理学大会暨第六届分析毒理专业委员会会议论文集. 宜昌, 2018: 89-90. [75] GAYLOR M O, HARVEY E, HALE R C. Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and Penta-BDE-amended soils [J]. Environmental Science & Technology, 2013, 47(23): 13831-13839. [76] XU G H, LIU Y, SONG X, et al. Size effects of microplastics on accumulation and elimination of phenanthrene in earthworms [J]. Journal of Hazardous Materials, 2021, 403: 123966. doi: 10.1016/j.jhazmat.2020.123966 [77] 刘雅倩, 马菁, 牟键坤, 等. 土壤环境中微塑料污染研究进展及展望 [J]. 环境科学与技术, 2021, 44(4): 45-53. doi: 10.19672/j.cnki.1003-6504.2021.04.007 LIU Y Q, MA J, MOU J K, et al. Research progress and prospect of microplastic pollution in soil environment [J]. Environmental Science & Technology, 2021, 44(4): 45-53(in Chinese). doi: 10.19672/j.cnki.1003-6504.2021.04.007
[78] LI L Z, LUO Y M, LI R J, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode [J]. Nature Sustainability, 2020, 3(11): 929-937. doi: 10.1038/s41893-020-0567-9 [79] 刘鑫蓓, 董旭晟, 解志红, 等. 土壤中微塑料的生态效应与生物降解[J]. 土壤学报, 2022, 59(2): 349-363. LIU X B, DONG X S, XIE Z H, et al. Ecological Effects and Biodegradation of Microplastics in Soils[J]. Acta Pedologica Sinica, 2022, 59(2): 349-363(in Chinese).
[80] QI Y L, YANG X M, PELAEZ A M, et al. Macro-and micro-plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum astivum) growth [J]. Science of the Total Environment, 2018, 645: 1048-1056. doi: 10.1016/j.scitotenv.2018.07.229 [81] 刘蓥蓥, 张旗, 崔文智, 等. 聚乙烯微塑料对绿豆发芽的毒性研究 [J]. 环境与发展, 2019, 31(5): 123-125. doi: 10.16647/j.cnki.cn15-1369/X.2019.05.070 LIU Y Y, ZHANG Q, CUI W Z, et al. Toxicity of polyethylene microplastics to seed germination of mung bean [J]. Environment and Development, 2019, 31(5): 123-125(in Chinese). doi: 10.16647/j.cnki.cn15-1369/X.2019.05.070
[82] 安菁, 刘欢语, 郑艳, 等. 土壤微塑料残留对大豆幼苗生长及生理生化特征的影响 [J]. 四川农业大学学报, 2021, 39(1): 41-46,113. doi: 10.16036/j.issn.1000-2650.2021.01.007 AN J, LIU H Y, ZHENG Y, et al. Effects of soil microplastics residue on soybean seedlings growth and the physiological and biochemical characteristics [J]. Journal of Sichuan Agricultural University, 2021, 39(1): 41-46,113(in Chinese). doi: 10.16036/j.issn.1000-2650.2021.01.007
[83] DE SOUZA MACHADO A A, LAU C W, KLOAAS W, et al. Microplastics can change soil properties and affect plant performance [J]. Environmental Science & Technology, 2019, 53(10): 6044-6052. [84] 李连祯, 周倩, 尹娜, 等. 食用蔬菜能吸收和积累微塑料 [J]. 科学通报, 2019, 64: 928-934. doi: 10.1360/N972018-00845 LI L Z, ZHOU Q, YIN N, et al. Eating vegetables can absorb and accumulate microplastics [J]. Chinese Science Bulletin, 2019, 64: 928-934(in Chinese). doi: 10.1360/N972018-00845
[85] JIANG X, CHEN H, LIAO Y, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba [J]. Environmental Pollution, 2019, 250: 831-838. doi: 10.1016/j.envpol.2019.04.055 [86] DONG Y M, GAO M L, SONG Z G, et al. Microplastic particles increase arsenic toxicity to rice seedlings [J]. Environmental Pollution, 2020, 259: 113892. doi: 10.1016/j.envpol.2019.113892 [87] LI Z X, LI R J, LI Q F, et al. Physiological response of Cucumber ( Cucumis sativus L. ) Leaves to polystyrene nanoplastics pollution [J]. Chemosphere, 2020, 255: 127041. doi: 10.1016/j.chemosphere.2020.127041 [88] 李贞霞, 李庆飞, 李瑞静, 等. 黄瓜幼苗对微塑料和镉污染的生理响应 [J]. 农业环境科学学报, 2020, 39(5): 973-981. doi: 10.11654/jaes.2019-1241 LI Z X, LI Q F, LI R J, et al. Physiological response of cucumber seedlings to microplastics and cadmium [J]. Journal of Agro-Environment Science, 2020, 39(5): 973-981(in Chinese). doi: 10.11654/jaes.2019-1241
[89] 王泽正, 杨亮, 李婕, 等. 微塑料和镉及其复合对水稻种子萌发的影响 [J]. 农业环境科学学报, 2021, 40(1): 44-53. doi: 10.11654/jaes.2020-0560 WANG Z Z, YANG L, LI J, et al. Single and combined effects of microplastics and cadmium on the germination characteristics of rice seeds [J]. Journal of Agro-Environment Science, 2021, 40(1): 44-53(in Chinese). doi: 10.11654/jaes.2020-0560
[90] 刘玲, 洪婷婷, 胡倩男, 等. 微塑料与铅复合污染对水稻幼苗根系生长和氧化应激的影响[J]. 农业环境科学学报, 2021, 40(12): 2623-2633. LIU L, HONG T T, HU Q N, et al. Effects of the combination of microplastics and lead pollution on growthand oxidative responses of rice seedlings’roots[J]. Journal of Agro-Environment Science, 2021, 40(12): 2623-2633(in Chinese).
[91] XU G H, LIU Y, YU Y. Effects of polystyrene microplastics on uptake and toxicity of phenanthrene in soybean [J]. Science of the Total Environment, 2021, 783: 147016. doi: 10.1016/j.scitotenv.2021.147016 [92] LIU S Q, WANG J W, ZHU J H, et al. The joint toxicity of polyethylene microplastic and phenanthrene to wheat seedlings [J]. Chemosphere, 2021, 282: 130967. doi: 10.1016/j.chemosphere.2021.130967 [93] WANG J, HUANG M, WANG Q, et al. LDPE microplastics significantly alter the temporal turnover of soil microbial communities [J]. Science of the Total Environment, 2020, 726: 138682. doi: 10.1016/j.scitotenv.2020.138682 [94] JUDY J D, WILLIAMS M, GREGG A, et al. Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota [J]. Environmental Pollution, 2019, 252: 522-531. doi: 10.1016/j.envpol.2019.05.027 [95] 李汶璐, 王志超, 杨文焕, 等. 微塑料对沉积物细菌群落组成和多样性的影响[J]. 环境科学, 2022, 43(5): 2606-2613. LI W L, WANG Z, C, YANG W H, et al. Effects of microplastics on bacterial community composition and diversity in sediments[J]. Environmental Science, 2022, 43(5): 2606-2613(in Chinese).
[96] TEUTEN E L, SAQUING J M, KNAPPE D R, et al. Transport and release of chemicals from plastics to the environment and to wildlife [J]. Philosophical Transactions:Biological Sciences, 2009, 364(1526): 2027-2045. doi: 10.1098/rstb.2008.0284 [97] SHI J H, WU D, SU Y L, et al. Selective enrichment of antibiotic resistance genes and pathogens on polystyrene microplastics in landfill leachate [J]. Science of the Total Environment, 2020: 142775. [98] KONG X, JIN D, JIN S, et al. Responses of bacterial community to dibutyl phthalate (DBP) pollution in a soil-vegetable ecosystem [J]. Journal of Hazardous Materials, 2018, 353(5): 142-150.