-
我国是人口和农业大国,在快速城市化和超大基数人口的背景下,生活垃圾成为亟待解决的问题,填埋是处理生活垃圾的主要手段之一[1]。地下水是我国近十亿人口的饮用水资源[2],生活垃圾填埋处理产生的渗滤液下渗至地下含水层会造成地下水不同程度的污染,渗滤液中含有高浓度的有机物、无机物和重金属等组分[3],污染物经由不同的途径进入人体将导致一定的健康风险[4-8]。通过地下水健康风险评价可以将污染物对人体的健康危害定量化,从而衡量危害程度[9]。目前国内使用最多的健康风险评价模型是由美国环境保护署(USEPA)推出的模型[1,10],但是由于生活饮食习惯、人种生理特征和地域气候条件的差异,在实际的健康风险评价中部分参数因子需要根据实际情况做出修正[1,7]。
有研究表明在渗滤液、土壤、气候、岩性和水文地质特征等综合影响下,地下水污染物的浓度在季风季节和寒冷季节前后常有明显变化[11];李军等[12]研究了会仙洞湿地丰、平、枯时期地下水重金属污染及健康风险,探讨了不同时期地下水污染特征变化及人群健康风险表征;渗滤液下渗至地下含水层是一个复杂多变的过程[13],不同类型的填埋场下渗面也不尽相同。下渗面为花岗岩的填埋场,花岗岩中含金属元素的矿石在降水淋溶作用下会溶解出金属元素进入地下水中,当地居民生产活动所产生的污染物也会经不同途径进入地下水,造成地下水污染源的多样性和复杂性。为了能更好地了解地下水污染源的复杂联系,主成分分析和相关性分析方法被广泛用于地下水污染源解析[14-16];目前对填埋场地下水污染的研究大多是单一途径下的健康风险评价及污染特征分析[17-22],而对山谷型填埋场地下水污染特征分析、来源解析及多途径的健康风险评价研究较少。山谷型填埋场是我国南方数量最多最典型的填埋场类型,研究该类型填埋场的地下水污染对实际地下水污染防治有重要意义。
本研究以长沙市某山谷型填埋场为例,分别在雨季期和非雨季期采集地下水样,对其水质进行评价,运用多元数理统计方法分析雨季前后地下水污染特征,选用主成分和相关性分析方法解析污染来源,最终利用健康风险模型分别对儿童和成人进行饮水和皮肤暴露途径的健康风险评价。以期为区域地下水污染治理及人体健康安全保障提供决策依据和参考数据。
山谷型填埋场地下水污染特征分析及健康风险评价
Pollution characteristics and health risk assessment of groundwater in a valley type landfill
-
摘要: 山谷型填埋场是我国南方数量最多的填埋场类型,针对其周边地下水的污染特征分析、污染源解析及健康风险评价具有重要意义。以长沙市某山谷型填埋场为例,从4个采样井收集雨季和非雨季时期32份地下水样本,对BOD5、CODCr、F−、NH3-N、TN、Hg、Fe、Mn、Ni共9项指标进行分析测试。运用F值综合水质评价法对水质进行评价并分析水污染特征,采用相关性分析和主成分分析法对污染源进行源解析,最终利用USEPA健康风险模型评价不同途经的健康风险评价。研究结果表明,除F−和Hg外,其余水质指标评价等级均为极差,超标率:Fe=TN>CODCr=Ni>Mn>NH3-N>BOD5>F−>Hg,变异系数均处于高度变异水平;污染源解析方面,BOD5和CODCr的主要来源为渗滤液,Hg、Fe、Mn、Ni、F−和TN的浓度受自然源和渗滤液共同作用,NH3-N的主要来源是人为活动污染;研究区儿童和成人的非致癌风险都在可接受范围内,雨季期的健康风险高于非雨季期,且儿童的健康风险高于成人,但致癌物Ni在饮水途径下儿童和成人的致癌风险均高于最大可接受水平1×10−4,饮水途径的风险高于皮肤暴露途径,是引起人体健康风险的主要途径。Abstract: Valley type landfill is the major landfill type in southern China. Hence, it is of great practical significance to analysis the characteristics and sources of the contaminants and assess the health risks of groundwater in the vicinity. A case study was carried out in one of the landfills in Changsha, 32 groundwater samples were collected from 4 sampling wells in both rainy and non-rainy seasons, from which BOD5, CODCr, F-, NH3-N, TN, Hg, Fe, Mn, Ni were tested. F value comprehensive water quality evaluation method was used to evaluate water quality and analyze groundwater pollution characteristics, while correlation analysis and principal component analysis were used to identify the source apportionments. Last but not least, USEPA health risk assessment model was applied to evaluate the health risk of different exposure routes. The results indicate that, Except for F− and Hg, the comprehensive water quality evaluation indexes are extremely unfavorable. The order of the exceedance rate was Fe=TN>CODCr=Ni>Mn>NH3-N>BOD5>F->Hg, and the coefficient of variation was at a high level. In terms of pollution source analysis, the major source of BOD5 and CODCr is leachate. The concentrations of Hg, Fe, Mn, Ni, F- and TN are affected by natural sources and leachate. The main source of NH3-N is anthropogenic pollution. The non-carcinogenic risk of children and adults in the study area are within the acceptable range. The health risk in rainy season is higher compare to non-rainy season, and the health risk of children is higher than that of adults. However, the carcinogenic risk of Ni was higher than the maximum acceptable level (1×10-4), for both children and adults. The risk of drinking water is higher than that of skin exposure, which forms the main path to cause human health risk.
-
Key words:
- landfill /
- groundwater pollution /
- pollution characteristics /
- source analyze /
- health risk
-
表 1 地下水质量等级
Table 1. Groundwater quality grade
级别Grade 优秀Excellent 良好Good 较好Medium 较差Poor 极差Fail F F<0.80 0.80≤F<2.50 2.50≤F<4.25 4.25≤F<7.20 F≥7.20 表 2 模型参数含义及数值来源
Table 2. Model parameter meaning and value source
参数
Parameter含义
Meaning单位
Unit儿童
Children成人
Adult参考文献
ReferencesCW 污染物浓度 mg·L−1 S S S IR 每日平均摄入量 L·d−1 1.14 1.7 [15] EF 暴露频率 d·a−1 350 350 [25] ED 暴露持续时间 a 10 30 [2] BW 平均体重 kg 16 62.7 [7] AT 平均作用时间 d (非致癌) 3650 10950 [15] d (致癌) 25550 25550 [15] SA 皮肤接触面积 cm2 8000 18000 [12] ET 皮肤暴露时间 h·d−1 0.6333 0.4167 [10] CF 单位体积转换因子 L·cm-3 0.001 0.001 [15] 注:S代表为实测值. Note: S indicates the measured value. 表 3 模型 SF、RfD和 PC计算数值
Table 3. Calculated values of model SF, RfD and PC
类别
Category参数
ParameterSF/(mg·(kg·d)−1) RfD/(mg·(kg· d)−1) PC/(cm·h−1) 饮水途经
Route of drinking water皮肤接触途经
Route of skin contact饮水途经
Route of drinking water皮肤接触途经
Route of skin contact非致癌 F− — — 0.06 0.013 0.001 NH3-N — — 0.97 0.8 0.001 TN — — 0.52 1.02 0.001 Fe — — 0.3 0.045 0.0001 Mn — — 0.046 0.00184 0.0001 Hg — — 0.0003 0.0003 0.0018 致癌 Ni 0.84 0.841 0.02 0.0054 0.0001 注:—表示无对应参考值;1表示由饮水途径参数代替;2表示由每日最大可摄入量代替.
Note: — indicates no corresponding reference value;1 is replaced by drinking water route parameter;2 represents the maximum daily intake.表 4 水质评价结果
Table 4. Water quality evaluation results
时期Period BOD5 CODCr TN NH3-N F- Hg Fe Mn Ni 雨季 8.11 8.79 8.76 7.55 7.38 0 8.05 7.58 — 非雨季 7.27 8.73 9.06 7.67 4.25 2.19 9.25 8.07 8.32 综合 7.69 8.76 8.91 7.61 5.82 1.1 8.65 7.83 — 注:— 表示未检测;/ 表示该项无计算结果;下同.
Note: — indicates not tested; / indicates that the item has no calculation result; Same as below.表 5 不同时期污染物浓度统计分析(mg·L−1)
Table 5. Statistical analysis of pollutant concentration in different periods (mg·L−1)
时期Period 统计值
StatisticsBOD5 CODCr TN NH3-N F- Hg Fe Mn Ni 雨季 最小值 2.45 14.5 0.36 0.06 0.25 0.0014 0.038 0.015 — 最大值 18.05 63.2 3.65 1.53 4.5 0.09 41.43 5.96 — 平均值 5.82 34.76 1.58 0.49 1.59 0.02 6.46 0.69 — 标准差 4.07 16.17 0.75 0.44 1.96 0.02 13.19 1.42 — 变异系数 0.7 0.47 0.48 0.9 1.23 1.26 2.04 2.05 — 超标率/% 5 87.5 81.25 37.5 37.5 0 75 43.75 — 非雨季 最小值 1.9 16.4 0.45 0.06 0.02 0.001 0.141 0.013 0.01 最大值 21.85 88.8 4.24 1.65 1.44 0.42 39.53 13.84 0.48 平均值 4.57 35.08 2.06 0.61 0.5 0.08 7.43 1.28 0.09 标准差 4.91 19.88 1.03 0.47 0.32 0.11 9.07 3.26 0.13 变异系数 1.07 0.57 0.5 0.76 0.65 1.26 1.22 2.55 1.49 超标率/% 12.5 75 87.5 43.75 6.25 0 93.75 87.5 81.25 综合期 最小值 1.9 14.5 0.36 0.06 0.02 0.001 0.038 0.013 0.01 最大值 21.85 88.8 4.25 1.65 4.5 0.42 41.43 13.84 0.48 平均值 5.19 34.92 1.82 0.55 1.05 0.05 6.94 0.99 0.09 标准差 4.55 18.12 0.94 0.46 1.51 0.08 11.33 5.23 0.13 变异系数 0.88 0.52 0.51 0.83 1.44 1.64 1.63 2.57 1.49 超标率/% 34.36 81.25 84.38 34.38 21.88 0 84.38 68.63 81.25 背景值 2.5 17.19 5.42 — 0.15 0.015 2.66 0.09 0.001 渗滤液 264.2 2641.15 4.47 — 1.45 0.027 3.6 0.64 0.061 地下水Ⅲ类水标准 ≤4 ≤20 ≤1.0 ≤0.5 ≤1.0 ≤0.001 ≤0.3 ≤0.1 ≤0.02 注:黑体为地表水Ⅲ类水标准值;Hg的浓度为μg·L−1.
Note: The bold text is the standard value of class Ⅲ surface water; The concentration of Hg is μg·L−1.表 6 相关性分析结果
Table 6. Correlation analysis results
指标Index BOD5 CODCr F- NH3-N TN Hg Fe Mn Ni BOD5 1 CODCr 0.533* 1 F -0.32 -0.329 1 NH3N 0.282 0.051 -0.11 1 TN 0.029 -0.06 0.446 -0.36 1 Hg -0.158 -0.157 0.593* -0.213 0.369 1 Fe -0.005 -0.058 0.709** -0.038 0.319 0.626** 1 Mn -0.133 -0.074 0.770** -0.017 0.261 0.780** 0.934** 1 Ni -0.164 -0.14 0.558* -0.239 0.124 0.664** 0.758** 0.787** 1 注:**表示在0.01水平上显著,*表示在0.05水平上显著. Note: ** means significant at the 0.01 level, * means significant at the 0.05 level. 表 7 污染因子的总方差解释
Table 7. Interpretation of total variance of pollution factors
成分
Components起始特征值
Starting eigenvalues提取平方和载入
Extract the sum of squares and load旋转平方和载入
Rotate squares and load特征值
Eigenvalue方差/%
Variance累计/%
Cumulative特征值
Eigenvalue方差/%
Variance累计/%
Cumulative特征值
Eigenvalue方差/%
Variance累计/%
Cumulative1 4.168 46.312 46.312 4.168 46.312 46.312 3.788 42.088 42.088 2 1.593 17.699 64.011 1.593 17.699 64.011 1.651 18.34 60.428 3 1.214 13.486 77.497 1.214 13.486 77.497 1.211 13.46 73.888 4 0.826 9.179 86.675 0.826 9.179 86.675 1.151 12.788 86.675 5 0.446 4.958 91.634 6 0.383 4.257 95.891 7 0.2 2.222 98.112 8 0.153 1.705 99.817 9 0.016 0.183 100 表 8 主成分因子载荷
Table 8. Principal component factor load
指标Index PC 1 PC 2 PC 3 PC 4 BOD5 -0.092 0.838 0.138 0.301 CODCr -0.053 0.888 -0.114 -0.108 F− 0.725 -0.365 0.407 0.077 NH3-N -0.057 0.092 -0.196 0.949 TN 0.19 0.023 0.935 -0.214 Hg 0.791 -0.096 0.205 -0.175 Fe 0.923 0.043 0.168 0.083 Mn 0.975 -0.044 0.1 0.066 Ni 0.885 -0.068 -0.14 -0.232 -
[1] 段小丽, 王宗爽, 李琴, 等. 基于参数实测的水中重金属暴露的健康风险研究 [J]. 环境科学, 2011, 32(5): 1329-1339. DUAN X L, WANG Z S, LI Q, et al. Health risk assessment of heavy metals in drinking water based on field measurement of exposure factors of Chinese people [J]. Environmental Science, 2011, 32(5): 1329-1339(in Chinese).
[2] 张韵, 黄健盛, 赵丽, 等. 垃圾填埋场地下水对居民健康的风险评价 [J]. 环境科学与管理, 2015, 40(9): 172-176. doi: 10.3969/j.issn.1673-1212.2015.09.043 ZHANG Y, HUANG J S, ZHAO L, et al. Health risk assessment for residents exposure to groundwater in a formal landfill [J]. Environmental Science and Management, 2015, 40(9): 172-176(in Chinese). doi: 10.3969/j.issn.1673-1212.2015.09.043
[3] XU Y, XUE X, DONG L, et al. Long-term dynamics of leachate production, leakage from hazardous waste landfill sites and the impact on groundwater quality and human health [J]. Waste Management, 2018, 82: 156-166. doi: 10.1016/j.wasman.2018.10.009 [4] 王月, 安达, 席北斗, 等. 基于三角随机模拟的生活垃圾填埋场地下水环境健康风险评价模型 [J]. 环境工程技术学报, 2016, 6(1): 49-56. doi: 10.3969/j.issn.1674-991X.2016.01.008 WANG Y, AN D, XI B D, et al. Assessment model of landfill sites groundwater environmental health risk based on stochastic simulation-triangular fuzzy numbers [J]. Journal of Environmental Engineering Technology, 2016, 6(1): 49-56(in Chinese). doi: 10.3969/j.issn.1674-991X.2016.01.008
[5] 徐颖, 马艺铭, 张溪, 等. 某生活垃圾填埋场周边地下水饮水途径健康风险评价 [J]. 生态环境学报, 2021, 30(3): 558-568. XU Y, MA Y M, ZHANG X, et al. Health risk assessment of groundwater drinking pathway around A municipal solid waste landfill [J]. Ecology and Environmental Sciences, 2021, 30(3): 558-568(in Chinese).
[6] 王晓东, 田伟, 张雪艳. 宁夏地区地下水金属元素分布特征及健康风险评价 [J]. 环境科学, 2022, 43(1): 329-338. WANG X D, TIAN W, ZHANG X Y. Distribution characteristics and health risk assessment of metal elements for groundwater in the Ningxia region of China [J]. Environmental Science, 2022, 43(1): 329-338(in Chinese).
[7] 余璇, 康亭, 郑晓笛, 等. 陈家冲垃圾填埋场地下水环境健康风险评价 [J]. 南水北调与水利科技, 2017, 15(5): 82-88. YU X, KANG T, ZHENG X D, et al. Study on groundwater quality impacted by Chenjiachong sanitary landfill [J]. South-to-North Water Transfers and Water Science & Technology, 2017, 15(5): 82-88(in Chinese).
[8] STEFANIA G A, ROTIROTI M, BUERGE I J, et al. Identification of groundwater pollution sources in a landfill site using artificial sweeteners, multivariate analysis and transport modeling [J]. Waste Management, 2019, 95: 116-128. doi: 10.1016/j.wasman.2019.06.010 [9] 周文武, 陈冠益, 穷达卓玛, 等. 拉萨市垃圾填埋场地下水水质的居民健康风险评价 [J]. 环境化学, 2020, 39(6): 1513-1522. doi: 10.7524/j.issn.0254-6108.2019041101 ZHOU W W, CHEN G Y, QIONG D, et al. Health risk assessment of groundwater quality in Lhasa landfill [J]. Environmental Chemistry, 2020, 39(6): 1513-1522(in Chinese). doi: 10.7524/j.issn.0254-6108.2019041101
[10] 周巾枚, 蒋忠诚, 徐光黎, 等. 铁矿周边地下水金属元素分布及健康风险评价 [J]. 中国环境科学, 2019, 39(5): 1934-1944. doi: 10.3969/j.issn.1000-6923.2019.05.017 ZHOU J M, JIANG Z C, XU G L, et al. Distribution and health risk assessment of metals in groundwater around iron mine [J]. China Environmental Science, 2019, 39(5): 1934-1944(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.05.017
[11] ZENG D, CHEN G Y, ZHOU P, et al. Factors influencing groundwater contamination near municipal solid waste landfill sites in the Qinghai-Tibetan plateau [J]. Ecotoxicology and Environmental Safety, 2021, 211: 111913. doi: 10.1016/j.ecoenv.2021.111913 [12] 李军, 赵一, 邹胜章, 等. 会仙岩溶湿地丰平枯时期地下水金属元素污染与健康风险 [J]. 环境科学, 2021, 42(1): 184-194. LI J, ZHAO Y, ZOU S Z, et al. Metal pollutions and human health risks in groundwater from wet, normal, and dry periods in the Huixian karst wetland, China [J]. Environmental Science, 2021, 42(1): 184-194(in Chinese).
[13] MISHRA S, TIWARY D, OHRI A, et al. Impact of municipal solid waste landfill leachate on groundwater quality in Varanasi, India [J]. Groundwater for Sustainable Development, 2019, 9: 100230. doi: 10.1016/j.gsd.2019.100230 [14] 赵卫东, 赵芦, 龚建师, 等. 宿州矿区浅层地下水污染评价及源解析 [J]. 地学前缘, 2021, 28(5): 1-14. ZHAO W D, ZHAO L, GONG J S, et al. Pollution assessment and source apportionment of shallow groundwater in Suzhou mining area, China [J]. Earth Science Frontiers, 2021, 28(5): 1-14(in Chinese).
[15] 师环环, 潘羽杰, 曾敏, 等. 雷州半岛地下水重金属来源解析及健康风险评价 [J]. 环境科学, 2021, 42(9): 4246-4256. SHI H H, PAN Y J, ZENG M, et al. Source analysis and health risk assessment of heavy metals in groundwater of Leizhou Peninsula [J]. Environmental Science, 2021, 42(9): 4246-4256(in Chinese).
[16] HUANG G X, ZHANG M, LIU C Y, et al. Heavy metal(loid)s and organic contaminants in groundwater in the Pearl River Delta that has undergone three decades of urbanization and industrialization: Distributions, sources, and driving forces [J]. Science of the Total Environment, 2018, 635: 913-925. doi: 10.1016/j.scitotenv.2018.04.210 [17] 旦增, 周鹏, 周文武, 等. 西藏日喀则市垃圾填埋场地下水环境质量评价 [J]. 环境工程, 2019, 37(5): 200-205. DAN Z, ZHOU P, ZHOU W W, et al. Groundwater environmental quality assessment in the landfill in Shigatse, Tibet [J]. Environmental Engineering, 2019, 37(5): 200-205(in Chinese).
[18] 韩聪, 高宗军, 刘久潭, 等. 郯城地区地下水化学特征及针对硝酸盐的健康风险评价 [J]. 地球与环境, 2021, 49(4): 436-446. HAN C, GAO Z J, LIU J T, et al. Chemical characteristics of groundwater and health risk assessment of nitrate in Tancheng area [J]. Earth and Environment, 2021, 49(4): 436-446(in Chinese).
[19] 李东凡, 滕彦国, 胡斌, 等. 拉林河流域地下水地球化学及污染特征 [J]. 北京师范大学学报(自然科学版), 2019, 55(6): 741-747. LI D F, TEN Y G, HU B, et al. Geochemistry and pollution of groundwater in Lalin River Basin [J]. Journal of Beijing Normal University (Natural Science), 2019, 55(6): 741-747(in Chinese).
[20] FOUFOU A, DJORFI S, HAIED N, et al. Water pollution diagnosis and risk assessment of Wadi Zied plain aquifer caused by the leachates of Annaba landfill (N-E Algeria) [J]. Energy Procedia, 2017, 119: 393-406. doi: 10.1016/j.egypro.2017.07.123 [21] 刘国, 刘晏辉, 何天煜, 等. 某垃圾填埋场地下水水化学与水质评价研究 [J]. 环境科学与技术, 2019, 42(4): 221-228. LIU G, LIU Y H, HE T Y, et al. Study on water chemistry and water quality evaluation of groundwater in a landfill [J]. Environmental Science & Technology, 2019, 42(4): 221-228(in Chinese).
[22] 敦宇, 武超, 杨帆, 等. 基于随机模拟的地下水铬污染健康风险动态评价 [J]. 南水北调与水利科技, 2019, 17(6): 121-126,137. DUN Y, WU C, YANG F, et al. Dynamic health risk assessment of chromium pollution in groundwater based on the stochastic simulation [J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(6): 121-126,137(in Chinese).
[23] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地下水质量标准: GB/T 14848—2017[S]. 北京: 中国标准出版社, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Standard for groundwater quality: GB/T 14848—2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
[24] 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838—2002[S]. 北京: 中国环境科学出版社, 2002. State Environmental Protection Administration of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Environmental quality standards for surface water: GB 3838—2002[S]. Beijing: China Environment Science Press, 2002(in Chinese).
[25] 段小丽, 聂静, 王宗爽, 等. 健康风险评价中人体暴露参数的国内外研究概况 [J]. 环境与健康杂志, 2009, 26(4): 370-373. DUAN X L, NIE J, WANG Z S, et al. Human exposure factors in health risk assessment [J]. Journal of Environment and Health, 2009, 26(4): 370-373(in Chinese).
[26] USEPA. Risk assessment guidance for superfund, human health evaluation manual (Part A), vol. 1[R]. Washington DC: Office of Emergency and Remedial Response, 1989: 35-52. [27] LV J S, LIU Y, ZHANG Z L, et al. Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils [J]. Journal of Hazardous Materials, 2013, 261: 387-397. doi: 10.1016/j.jhazmat.2013.07.065 [28] KHAN K, LU Y L, KHAN H, et al. Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan [J]. Journal of Environmental Sciences, 2013, 25(10): 2003-2013. doi: 10.1016/S1001-0742(12)60275-7 [29] 贺勇, 李冰冰, 朱考飞, 等. 长沙市固体废弃物处理场水文地质及环境效应评价 [J]. 钻探工程, 2021, 48(4): 110-115. HE Y, LI B B, ZHU K F, et al. Evaluation of hydrogeology and environmental effect of a municipal solid waste landfill in Changsha [J]. Drilling Engineering, 2021, 48(4): 110-115(in Chinese).
[30] 刘贝, 黄文辉, 敖卫华, 等. 沁水盆地晚古生代煤中硫的地球化学特征及其对有害微量元素富集的影响 [J]. 地学前缘, 2016, 23(3): 59-67. LIU B, HUANG W H, AO W H, et al. Geochemistry characteristics of sulfur and its effect on hazardous elements in the Late Paleozoic coal from the Qinshui Basin [J]. Earth Science Frontiers, 2016, 23(3): 59-67(in Chinese).
[31] 徐静, 刘国华, 郦逸根, 等. 氟的生物环境地球化学与含氟水处理技术 [J]. 西部探矿工程, 2004, 16(10): 209-211. doi: 10.3969/j.issn.1004-5716.2004.10.110 XU J, LIU G H, LI Y G, et al. Fluorine bio-environmental geochemistry and fluoric water treatment [J]. West-China Exploration Engineering, 2004, 16(10): 209-211(in Chinese). doi: 10.3969/j.issn.1004-5716.2004.10.110
[32] ADIMALLA N, VENKATAYOGI S. Geochemical characterization and evaluation of groundwater suitability for domestic and agricultural utility in semi-arid region of Basara, Telangana State, South India [J]. Applied Water Science, 2018, 8(1): 1-14. doi: 10.1007/s13201-017-0639-9 [33] ALSUHAIMI A O, ALMOHAIMIDI K M, MOMANI K A. Preliminary assessment for physicochemical quality parameters of groundwater in Oqdus Area, Saudi Arabia [J]. Journal of the Saudi Society of Agricultural Sciences, 2019, 18(1): 22-31. doi: 10.1016/j.jssas.2016.12.002 [34] 张勇, 郭纯青, 孙平安, 等. 基于空间分析荞麦地流域地下水健康风险评价 [J]. 中国环境科学, 2019, 39(11): 4762-4768. doi: 10.3969/j.issn.1000-6923.2019.11.035 ZHANG Y, GUO C Q, SUN P G, et al. Groundwater health risk assessment based on spatial analysis in the Qiaomaidi watershed [J]. China Environmental Science, 2019, 39(11): 4762-4768(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.11.035
[35] 杨琴, 汤秋鸿, 张永勇. 淮河流域(河南段)水质时空变化特征及其与土地利用类型的关系 [J]. 环境科学研究, 2019, 32(9): 1519-1530. YANG Q, TANG Q H, ZHANG Y Y. Spatiotemporal changes of water quality in Huai River Basin(Henan Section) and its correlation with land use patterns [J]. Research of Environmental Sciences, 2019, 32(9): 1519-1530(in Chinese).
[36] 高凤杰, 王鑫, 韩晶, 等. 东北黑土区小流域耕地土壤重金属污染特征及健康风险评价: 以海沟河小流域为例 [J]. 中国农业大学学报, 2020, 25(8): 73-83. doi: 10.11841/j.issn.1007-4333.2020.08.08 GAO F J, WANG X, HAN J, et al. Heavy metal pollution characteristics and its health risk assessment in a mollisol watershed of Northeast China: Taking Haigou watershed as study case [J]. Journal of China Agricultural University, 2020, 25(8): 73-83(in Chinese). doi: 10.11841/j.issn.1007-4333.2020.08.08